Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Störfall in der Proteinfabrik

11.04.2008
Wie Antibiotika die Proteinsynthese im Ribosom lahm legen

Die Protein-Biosynthese ist einer der wichtigsten Prozesse in jeder lebenden Zelle. Dabei wird der genetische Code in eine Kette von Aminosäuren übersetzt, die sich dann zu der dreidimensionalen Struktur eines Proteins faltet. Ist die Protein-Biosynthese gestört, gerät die Maschinerie des Lebens ins Stocken.

Daher ist sie ein beliebtes Angriffsziel anti-mikrobieller Wirkstoffe, die unerwünschte Krankheitserreger abtöten sollen. Und so greifen die meisten der neu entwickelten Antibiotika genau in diesen komplexen Prozess am Ribosom ein.

Wissenschaftlern des Exzellenzclusters Makromolekulare Komplexe an der Goethe Universität Frankfurt ist es nun erstmals gelungen, das Andocken von Antibiotika an einem neuen Ort der bakteriellen Proteinfabrik, dem Ribosom, in drei Dimensionen sichtbar zu machen. Dabei gewannen sie zusätzlich neue Erkenntnisse über den Prozess der Protein-Biosynthese, wie sie in der aktuellen Ausgabe im Titelbeitrag der Fachzeitschrift Molecular Cell berichten.

Das Ribosom setzt sich zu Beginn der Protein-Biosynthese aus zwei Untereinheiten zusammen, einer kleinen Untereinheit, die für die Übersetzung des genetischen Codes verantwortlich ist, und einer großen Untereinheit, an welcher die Aminosäuren zu einer Kette verknüpft werden. Strukturelle Erkenntnisse über Bindungsstellen und Funktion von Antibiotika an der großen Untereinheit bezogen sich bisher alle auf den Ort, an dem das neu entstehende Protein zusammengestellt wird (Peptidyl-Transferase-Zentrum).

Wissenschaftlern um Prof. Dr. Paola Fucini vom Frankfurter Exzellenzcluster ist es jetzt mittels Röntgenstrukturanalyse gelungen, die Störung einer weiteren wichtigen Funktionsregion (GTPase Associated Region) durch die Einwirkung von drei Thiopeptid-Antibiotika auf struktureller Ebene darzustellen. Dabei ergaben sich nicht nur wichtige Erkenntnisse für die Entwicklung neuer, wirksamer Antibiotika, sondern es wurde auch ein weiteres Puzzleteil zur genauen Kenntnis des Ablaufs der Protein-synthese gefunden.

Die Proteinbiosynthese im Ribosom ähnelt dem Knüpfen einer langen Proteinkette an einem Fließband. Entscheidend für einen störungsfreien Ablauf ist die korrekte Positionierung sowie das geordnete Weiterrücken der transfer-RNA (tRNA) auf dem Fließband, auch Translokation genannt. Die tRNA liest sozusagen an einem Ende den Bauplan für das zu synthetisierende Protein und stellt am anderen Ende die entsprechende Aminosäure bereit. Die dafür notwendige Energie wird von so genannten Elongations-Faktoren bereitgestellt, die an die GTPase Associated Region im Ribosom andocken.

Wie stören Antibiotika diesen Prozess? Die Forschergruppe fand heraus, dass zwei der untersuchten Antibiotika (Thiostrepton und Nosiheptide) sich mit der Kontaktregion des Elongations-Faktors-G (EF-G) überlagern und damit den Energie-Nachschub blockieren. Darüber hinaus bewirken sie eine Konformationsänderung der molekularen Umgebung, so dass die korrekte Bindung und Funktion dieses Elongations-Faktors nicht mehr möglich ist. Damit wird die korrekte Positionierung der t-RNA verhindert, was letztendlich zum Stillstand der Proteinbiosynthese auf dem ribosonalen Fließband führt.

Micrococcin, das dritte untersuchte Antibiotikum, bewirkt dagegen fast das genaue Gegenteil: Es führt zu einer Konformationsänderung, die die Bindung eines relativ flexibel bewegbaren ribosomalen Proteins unterstützt und damit die optimale Kontaktumgebung für den Elongatonsfaktor schafft. Dies konnte im Rahmen der Forschungskooperation, an der auch das Max-Planck-Institut für Molekulare Genetik und die Charité in Berlin sowie die Universitäten in München und Marburg beteiligt waren, zum ersten Mal auf struktureller Ebene dargestellt werden. Die antimikrobielle Wirkung des Antibiotikums besteht in diesem Fall darin, ausschließlich diesen einen Zustand auszubilden, so dass die relativ variable Region für die anderen Zustände sowie andere Elongations-Faktoren blockiert sind. Somit kommt auch hierbei die Proteinbiosynthese zum Stillstand.

Obwohl die hier untersuchten Antibiotika nicht auf menschliche oder tierische Zellen wirken, geht aus aktuellen Untersuchungen hervor, dass sie auch Einfluss auf das Wachstum der Malaria Parasiten haben. Mit Sicherheit können die gewonnenen strukturellen Bindungsinformationen gezielt verwendet werden, um neue Medikamente zu erzeugen.

Beitrag in der Fachzeitschift Molecular Cell:
http://www.molecule.org/content/issue?volume=30&issue=1
Weitere Informationen:
Prof. Dr. Paola Fucini, Institut für Organische Chemie und Chemische Biologie, Campus Riedberg, Max-von-Laue-Str. 7,
60438 Frankfurt, Tel.: 069-798 29145
E-Mail: fucini@chemie.uni-frankfurt.de sowie
Dr. Jörg Harms, Tel.: 01785102447
E-Mail: harms@chemie.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.molecule.org/content/issue?volume=30&issue=1
http://user.uni-frankfurt.de/~joharms/akfucini/
http://www.cef-mc.de/

Weitere Berichte zu: Aminosäure Antibiotikum Protein Protein-Biosynthese Ribosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics