Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Störfall in der Proteinfabrik

11.04.2008
Wie Antibiotika die Proteinsynthese im Ribosom lahm legen

Die Protein-Biosynthese ist einer der wichtigsten Prozesse in jeder lebenden Zelle. Dabei wird der genetische Code in eine Kette von Aminosäuren übersetzt, die sich dann zu der dreidimensionalen Struktur eines Proteins faltet. Ist die Protein-Biosynthese gestört, gerät die Maschinerie des Lebens ins Stocken.

Daher ist sie ein beliebtes Angriffsziel anti-mikrobieller Wirkstoffe, die unerwünschte Krankheitserreger abtöten sollen. Und so greifen die meisten der neu entwickelten Antibiotika genau in diesen komplexen Prozess am Ribosom ein.

Wissenschaftlern des Exzellenzclusters Makromolekulare Komplexe an der Goethe Universität Frankfurt ist es nun erstmals gelungen, das Andocken von Antibiotika an einem neuen Ort der bakteriellen Proteinfabrik, dem Ribosom, in drei Dimensionen sichtbar zu machen. Dabei gewannen sie zusätzlich neue Erkenntnisse über den Prozess der Protein-Biosynthese, wie sie in der aktuellen Ausgabe im Titelbeitrag der Fachzeitschrift Molecular Cell berichten.

Das Ribosom setzt sich zu Beginn der Protein-Biosynthese aus zwei Untereinheiten zusammen, einer kleinen Untereinheit, die für die Übersetzung des genetischen Codes verantwortlich ist, und einer großen Untereinheit, an welcher die Aminosäuren zu einer Kette verknüpft werden. Strukturelle Erkenntnisse über Bindungsstellen und Funktion von Antibiotika an der großen Untereinheit bezogen sich bisher alle auf den Ort, an dem das neu entstehende Protein zusammengestellt wird (Peptidyl-Transferase-Zentrum).

Wissenschaftlern um Prof. Dr. Paola Fucini vom Frankfurter Exzellenzcluster ist es jetzt mittels Röntgenstrukturanalyse gelungen, die Störung einer weiteren wichtigen Funktionsregion (GTPase Associated Region) durch die Einwirkung von drei Thiopeptid-Antibiotika auf struktureller Ebene darzustellen. Dabei ergaben sich nicht nur wichtige Erkenntnisse für die Entwicklung neuer, wirksamer Antibiotika, sondern es wurde auch ein weiteres Puzzleteil zur genauen Kenntnis des Ablaufs der Protein-synthese gefunden.

Die Proteinbiosynthese im Ribosom ähnelt dem Knüpfen einer langen Proteinkette an einem Fließband. Entscheidend für einen störungsfreien Ablauf ist die korrekte Positionierung sowie das geordnete Weiterrücken der transfer-RNA (tRNA) auf dem Fließband, auch Translokation genannt. Die tRNA liest sozusagen an einem Ende den Bauplan für das zu synthetisierende Protein und stellt am anderen Ende die entsprechende Aminosäure bereit. Die dafür notwendige Energie wird von so genannten Elongations-Faktoren bereitgestellt, die an die GTPase Associated Region im Ribosom andocken.

Wie stören Antibiotika diesen Prozess? Die Forschergruppe fand heraus, dass zwei der untersuchten Antibiotika (Thiostrepton und Nosiheptide) sich mit der Kontaktregion des Elongations-Faktors-G (EF-G) überlagern und damit den Energie-Nachschub blockieren. Darüber hinaus bewirken sie eine Konformationsänderung der molekularen Umgebung, so dass die korrekte Bindung und Funktion dieses Elongations-Faktors nicht mehr möglich ist. Damit wird die korrekte Positionierung der t-RNA verhindert, was letztendlich zum Stillstand der Proteinbiosynthese auf dem ribosonalen Fließband führt.

Micrococcin, das dritte untersuchte Antibiotikum, bewirkt dagegen fast das genaue Gegenteil: Es führt zu einer Konformationsänderung, die die Bindung eines relativ flexibel bewegbaren ribosomalen Proteins unterstützt und damit die optimale Kontaktumgebung für den Elongatonsfaktor schafft. Dies konnte im Rahmen der Forschungskooperation, an der auch das Max-Planck-Institut für Molekulare Genetik und die Charité in Berlin sowie die Universitäten in München und Marburg beteiligt waren, zum ersten Mal auf struktureller Ebene dargestellt werden. Die antimikrobielle Wirkung des Antibiotikums besteht in diesem Fall darin, ausschließlich diesen einen Zustand auszubilden, so dass die relativ variable Region für die anderen Zustände sowie andere Elongations-Faktoren blockiert sind. Somit kommt auch hierbei die Proteinbiosynthese zum Stillstand.

Obwohl die hier untersuchten Antibiotika nicht auf menschliche oder tierische Zellen wirken, geht aus aktuellen Untersuchungen hervor, dass sie auch Einfluss auf das Wachstum der Malaria Parasiten haben. Mit Sicherheit können die gewonnenen strukturellen Bindungsinformationen gezielt verwendet werden, um neue Medikamente zu erzeugen.

Beitrag in der Fachzeitschift Molecular Cell:
http://www.molecule.org/content/issue?volume=30&issue=1
Weitere Informationen:
Prof. Dr. Paola Fucini, Institut für Organische Chemie und Chemische Biologie, Campus Riedberg, Max-von-Laue-Str. 7,
60438 Frankfurt, Tel.: 069-798 29145
E-Mail: fucini@chemie.uni-frankfurt.de sowie
Dr. Jörg Harms, Tel.: 01785102447
E-Mail: harms@chemie.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.molecule.org/content/issue?volume=30&issue=1
http://user.uni-frankfurt.de/~joharms/akfucini/
http://www.cef-mc.de/

Weitere Berichte zu: Aminosäure Antibiotikum Protein Protein-Biosynthese Ribosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen