Neue Chancen in der Krebstherapie

Mitverfasser ist der Chemie-Nobelpreisträger Professor Robert Huber, der als Gastprofessor am Zentrum für Medizinische Biotechnologie (ZMB) an der Universität Duisburg-Essen lehrt und forscht. Seine Arbeiten tragen wesentlichen zur Aufklärung eines neuartigen Virulenzfaktors bei.

Krankmachende Bakterien benutzen spezielle Moleküle, um die Stärke, mit der sie Organismen oder Zellen infizieren („Virulenz“), zu erhöhen. Ein internationales Team bestehend aus Forschern der Universität Zürich, der TU München, der Universität Cardiff, der Max-Planck-Gesellschaft, der US-amerikanischen Universitäten auf Hawaii und in Kalifornien sowie der Universität Duisburg-Essen hat jetzt einen neuen Virulenzfaktor entdeckt (Syringolin A), der die Infektionsrate dadurch erhöht, dass er den Proteasomkomplex der Wirtszelle blockiert. Durch die Schwächung des Proteasoms, einer wichtigen Schaltstelle in der Zelle, die für den korrekten Abbau von Proteinen verantwortlich ist, sind die Abwehrmechanismen der Zelle zum großen Teil außer Gefecht gesetzt.

Die Wirkungsweise des Syringolin A ist zunächst bei Pflanzen gefunden und analysiert worden. Weitere Untersuchungen dieser Studie haben ergeben, dass ein ähnlicher Faktor (Glidobactin), der bei humanpathogenen Bakterien vorkommt, in gleicher Weise das Proteasom hemmt und vermutlich für die Pathogenizität verantwortlich ist. Das macht die Molekülfamilie der Syrbactine, zu der Syringolin und Glidobactin gehören, interessant für die medizinische Anwendung und Medikamententwicklung.

Der Einsatz von Proteasom-Inhibitoren könnte in der Zukunft neue Perspektiven in der Krebstherapie eröffnen. Denn die Behandlung mit Proteasom-Inhibitoren kann das Tumorwachstum hemmen und zum schnelleren Tod der Tumorzellen führen. Der erste zugelassene Proteasom-Inhibitor, Bortezomib, wird bereits zur Behandlung des Multiplen Myeloms, einer Krebserkrankung des Knochenmarks eingesetzt.

Der Chemiker Professor Robert Huber hat zusammen mit Professor Michael Groll von der Technischen Universität München mit Hilfe der Röntgenkristallographie die Struktur aufgeklärt, die zeigt, wie das Syringolin A und Glidobactin an das Proteasom binden. Die genaue Betrachtung der Kristallstruktur des Proteasoms im Komplex mit Syringolin A zeigt einen bisher unbekannten Mechanismus, wie der Faktor an die katalytischen Untereinheiten gebunden ist. Professor Robert Huber, der 1988 für die Erforschung der dreidimensionalen Struktur des photosynthetischen Reaktionszentrums den Nobelpreis für Chemie erhielt, erforscht bis heute die Strukturen medizinisch-biologisch relevanter Moleküle.

Redaktion: Beate H. Kostka, Tel. 0203/379-2430
Weitere Informationen: Dr. Lydia Didt-Koziel, Zentrum fuer Medizinische Biotechnologie (ZMB), Tel: 0201/183-3670, Mobil: 0171/10 30 502

Media Contact

Beate Kostka idw

Weitere Informationen:

http://www.uni-duisburg-essen.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer