Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Superscharfer Videoclip aus der Zelle

29.02.2008
Göttinger Wissenschaftler filmen erstmals einen zellulären Lebensvorgang mit Nanoauflösung

Die Lebensvorgänge im Inneren von Zellen in Echtzeit direkt zu verfolgen, davon träumen Biologen seit Langem. Um relevante Details zu verfolgen, benötigen Wissenschaftler dazu jedoch eine Auflösung auf der Nanometerskala, die bisher in lebenden Zellen mit einem Lichtmikroskop nicht zu erreichen war.

Forschern des Max-Planck-Instituts für biophysikalische Chemie und des Exzellenzclusters "Mikroskopie im Nanometerbereich", das im Rahmen der Eliteförderung der Universität Göttingen gebildet wurde, ist es nun mithilfe der STED-Mikroskopie gelungen, das erste Video auf der Nanoskala aus dem Inneren einer lebenden Zelle "auf Film" zu bannen. Mit bis zu 28 Bildern pro Sekunde und einer Auflösung, die bis zu 4-mal besser ist als die herkömmlicher Lichtmikroskope, beobachteten die Forscher schnelle Bewegungen winziger Zellbausteine. Erstmals wurde so die Fortbewegung dicht gepackter, mit Botenstoffen gefüllter Bläschen in Nervenzellen live mitverfolgt. (Science Express, 21. Februar 2008).

Schafft man es, Lebensvorgänge im Innersten unserer Zellen detailliert zu verfolgen, kann man leicht verstehen, was sich in ihnen abspielt. Doch scharf zu sehen, war lange Zeit nur mit Elektronen- oder Rastersondenmikroskopie möglich - aber nicht im Inneren einer lebenden Zelle.

Die Lichtmikroskopie wiederum ermöglicht zwar "berührungsfreie" Untersuchungen, allerdings sind diese nicht scharf genug. Die Auflösung der Lichtmikroskopie war an einer scheinbar unüberwindbaren Grenze angelangt, die mit 0,2 bis 0,3 Mikrometern (einem Tausendstel Millimeter) etwa der halben Wellenlänge des Lichts entspricht. Mit seinem neu entwickelten "Stimulated Emission Depletion" (STED)-Mikroskop konnte Stefan Hell, Direktor am Max-Planck-Institut für biophysikalische Chemie, erstmals die Auflösung der Fluoreszenz-Mikroskopie dramatisch steigern und legte so den Grundstein für eine Lichtmikroskopie mit Auflösung auf der Nanometerskala. Mithilfe des STED-Mikroskops gelang es den Wissenschaftlern bereits, einzelne Eiweiß-Komplexe im Abstand von 20 bis 50 Nanometern voneinander getrennt zu sehen - Strukturen, die etwa 1000-mal kleiner sind als ein menschliches Haar. In fast allen diesen Momentaufnahmen waren die Zellen jedoch chemisch fixiert - und somit in ihren natürlichen Lebensvorgängen "eingefroren". Die lange Belichtungszeit für ein einzelnes Bild erlaubte es nicht, Bewegungen aufzunehmen.

Durch die Entwicklung besonders schneller Aufnahmetechniken für die STED-Mikroskopie gelang es den Physikern Volker Westphal, Marcel Lauterbach und Stefan Hell in Zusammenarbeit mit dem Biologen Silvio Rizzoli vom Göttinger Exzellenzcluster "Mikroskopie im Nanometerbereich", auch schnelle Bewegungsvorgänge innerhalb der Zelle direkt "auf Film" zu bannen. Die Wissenschaftler konnten die Belichtungszeit für eine einzelne Aufnahme so drastisch verkürzen, dass sie Bewegungsvorgänge mit einer Auflösung von 65 bis 70 Nanometern - also 3- bis 4-mal besser als die Beugungsgrenze - in Echtzeit einfangen. Als Untersuchungsobjekt dienten den Forschern dabei lebende Nervenzellen.

Bewegungen winziger Vesikel in Nervenzellen live verfolgen

Zwischen Nervenzellen werden Signale über Botenstoffe übertragen, die von der Senderzelle abgegeben und von der Empfängerzelle erkannt werden. Diese Botenstoffe werden in speziellen Bläschen ("Vesikeln") bereits auf Vorrat gehalten. Den Wissenschaftlern gelang es, die schnelle Bewegung dieser kleinen Vesikel in den Nervenendigungen mit bis zu 28 Bildern pro Sekunde aufzuzeichnen. Mit einer Größe von 40 Nanometern sind auch diese Vesikel winzig - etwa 1000 von ihnen passen auf die Breite eines Haares. Unter dem Mikroskop konnten die Forscher direkt in bisher ungekannter Schärfe mitverfolgen, wie sich die schnellen Vesikel über die gesamte Länge der Nervenendigungen bewegten. "Dabei binden sie zwischendurch an Zellstrukturen und lösen sich wieder von diesen ab", beschreibt Silvio Rizzoli die Geschehnisse in den Nervenendigungen. Diese Erkenntnisse ermöglichen Wissenschaftlern wichtige neue Einblicke in die Prozesse bei der Signalübertragung zwischen Nervenzellen. "Damit konnten wir erstmals zeigen, dass man dynamische Lebensvorgänge in Echtzeit aufnehmen kann - und zwar mit einer Auflösung, die bisher nur mit dem Elektronenmikroskop möglich war", fasst Stefan Hell den Entwicklungssprung in der Mikroskopie zusammen.

Bereits im November letzten Jahres brachte die Firma Leica das erste kommerzielle STED-Mikroskop auf den Markt. In der Nachwuchsgruppe unter Leitung von Silvio Rizzoli steht bereits ein solches Mikroskop. Rizzoli untersucht damit die Vorgänge in den Vesikeln der Nervenzellen von Ratten.

Aber nicht nur Vorgänge, die bei der Übertragung von Signalen zwischen Nervenzellen eine Rolle spielen, lassen sich mit der STED-Mikroskopie klären. So erwarten Forscher, dass sich zukünftig damit viele Fragen der biologischen und medizinischen Forschung beantworten lassen. Ziel von Stefan Hell und seinen Mitarbeitern ist es nun, das Aufnahmeverfahren weiter zu optimieren. Für dessen Anwendung sieht Hell ein enormes Potential: "Erstmals Vorgänge auf der Nanoskala zu filmen, war ein wichtiger Schritt. Es stößt ein Tor auf zu neuen Erkenntnissen auf der molekularen Skala des Lebens - ein Tor, von dem man lange Zeit annahm, dass es das gar nicht gibt."

Zur Person

Prof. Stefan W. Hell, Jahrgang 1962, studierte Physik in Heidelberg. Nach seiner Promotion 1990 in Heidelberg verfolgte er seine Ideen zunächst als "freier Erfinder". Nach einer Zeit als Postdoktorand am EMBL in Heidelberg ging er 1993 als Gruppenleiter nach Turku, Finnland. Dort entwickelte er das Prinzip der STED-Mikroskopie. Im Jahr 1996 wechselte Hell als Leiter einer Max-Planck-Nachwuchsgruppe an das Göttinger Max-Planck-Institut für biophysikalische Chemie. Dort leitet er seit 2002 die Abteilung NanoBiophotonik. Stefan Hell ist wissenschaftliches Mitglied der Max-Planck-Gesellschaft und Honorarprofessor für Experimentalphysik an der Georg-August-Universität Göttingen. Er erhielt zahlreiche Preise und Auszeichnungen, darunter den Preis der "International Commission for Optics (ICO)" (2000), den Helmholtz-Preis (2002), den "Deutschen Zukunftspreis des Bundespräsidenten" (2006) sowie den Gottfried-Wilhelm-Leibniz-Preis (2008).

Originalveröffentlichung:

Volker Westphal, Silvio O. Rizzoli, Marcel A. Lauterbach, Dirk Kamin, Reinhard Jahn, Stefan W. Hell
Video-rate far-field optical nanoscopy dissects synaptic vesicle movement.
Science Express (Online-Veröffentlichung 21. Februar 2008)

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2008/pressemitteilung20080229/

Weitere Berichte zu: Botenstoff Lichtmikroskop Nervenzelle Vesikel Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise