Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Superscharfer Videoclip aus der Zelle

29.02.2008
Göttinger Wissenschaftler filmen erstmals einen zellulären Lebensvorgang mit Nanoauflösung

Die Lebensvorgänge im Inneren von Zellen in Echtzeit direkt zu verfolgen, davon träumen Biologen seit Langem. Um relevante Details zu verfolgen, benötigen Wissenschaftler dazu jedoch eine Auflösung auf der Nanometerskala, die bisher in lebenden Zellen mit einem Lichtmikroskop nicht zu erreichen war.

Forschern des Max-Planck-Instituts für biophysikalische Chemie und des Exzellenzclusters "Mikroskopie im Nanometerbereich", das im Rahmen der Eliteförderung der Universität Göttingen gebildet wurde, ist es nun mithilfe der STED-Mikroskopie gelungen, das erste Video auf der Nanoskala aus dem Inneren einer lebenden Zelle "auf Film" zu bannen. Mit bis zu 28 Bildern pro Sekunde und einer Auflösung, die bis zu 4-mal besser ist als die herkömmlicher Lichtmikroskope, beobachteten die Forscher schnelle Bewegungen winziger Zellbausteine. Erstmals wurde so die Fortbewegung dicht gepackter, mit Botenstoffen gefüllter Bläschen in Nervenzellen live mitverfolgt. (Science Express, 21. Februar 2008).

Schafft man es, Lebensvorgänge im Innersten unserer Zellen detailliert zu verfolgen, kann man leicht verstehen, was sich in ihnen abspielt. Doch scharf zu sehen, war lange Zeit nur mit Elektronen- oder Rastersondenmikroskopie möglich - aber nicht im Inneren einer lebenden Zelle.

Die Lichtmikroskopie wiederum ermöglicht zwar "berührungsfreie" Untersuchungen, allerdings sind diese nicht scharf genug. Die Auflösung der Lichtmikroskopie war an einer scheinbar unüberwindbaren Grenze angelangt, die mit 0,2 bis 0,3 Mikrometern (einem Tausendstel Millimeter) etwa der halben Wellenlänge des Lichts entspricht. Mit seinem neu entwickelten "Stimulated Emission Depletion" (STED)-Mikroskop konnte Stefan Hell, Direktor am Max-Planck-Institut für biophysikalische Chemie, erstmals die Auflösung der Fluoreszenz-Mikroskopie dramatisch steigern und legte so den Grundstein für eine Lichtmikroskopie mit Auflösung auf der Nanometerskala. Mithilfe des STED-Mikroskops gelang es den Wissenschaftlern bereits, einzelne Eiweiß-Komplexe im Abstand von 20 bis 50 Nanometern voneinander getrennt zu sehen - Strukturen, die etwa 1000-mal kleiner sind als ein menschliches Haar. In fast allen diesen Momentaufnahmen waren die Zellen jedoch chemisch fixiert - und somit in ihren natürlichen Lebensvorgängen "eingefroren". Die lange Belichtungszeit für ein einzelnes Bild erlaubte es nicht, Bewegungen aufzunehmen.

Durch die Entwicklung besonders schneller Aufnahmetechniken für die STED-Mikroskopie gelang es den Physikern Volker Westphal, Marcel Lauterbach und Stefan Hell in Zusammenarbeit mit dem Biologen Silvio Rizzoli vom Göttinger Exzellenzcluster "Mikroskopie im Nanometerbereich", auch schnelle Bewegungsvorgänge innerhalb der Zelle direkt "auf Film" zu bannen. Die Wissenschaftler konnten die Belichtungszeit für eine einzelne Aufnahme so drastisch verkürzen, dass sie Bewegungsvorgänge mit einer Auflösung von 65 bis 70 Nanometern - also 3- bis 4-mal besser als die Beugungsgrenze - in Echtzeit einfangen. Als Untersuchungsobjekt dienten den Forschern dabei lebende Nervenzellen.

Bewegungen winziger Vesikel in Nervenzellen live verfolgen

Zwischen Nervenzellen werden Signale über Botenstoffe übertragen, die von der Senderzelle abgegeben und von der Empfängerzelle erkannt werden. Diese Botenstoffe werden in speziellen Bläschen ("Vesikeln") bereits auf Vorrat gehalten. Den Wissenschaftlern gelang es, die schnelle Bewegung dieser kleinen Vesikel in den Nervenendigungen mit bis zu 28 Bildern pro Sekunde aufzuzeichnen. Mit einer Größe von 40 Nanometern sind auch diese Vesikel winzig - etwa 1000 von ihnen passen auf die Breite eines Haares. Unter dem Mikroskop konnten die Forscher direkt in bisher ungekannter Schärfe mitverfolgen, wie sich die schnellen Vesikel über die gesamte Länge der Nervenendigungen bewegten. "Dabei binden sie zwischendurch an Zellstrukturen und lösen sich wieder von diesen ab", beschreibt Silvio Rizzoli die Geschehnisse in den Nervenendigungen. Diese Erkenntnisse ermöglichen Wissenschaftlern wichtige neue Einblicke in die Prozesse bei der Signalübertragung zwischen Nervenzellen. "Damit konnten wir erstmals zeigen, dass man dynamische Lebensvorgänge in Echtzeit aufnehmen kann - und zwar mit einer Auflösung, die bisher nur mit dem Elektronenmikroskop möglich war", fasst Stefan Hell den Entwicklungssprung in der Mikroskopie zusammen.

Bereits im November letzten Jahres brachte die Firma Leica das erste kommerzielle STED-Mikroskop auf den Markt. In der Nachwuchsgruppe unter Leitung von Silvio Rizzoli steht bereits ein solches Mikroskop. Rizzoli untersucht damit die Vorgänge in den Vesikeln der Nervenzellen von Ratten.

Aber nicht nur Vorgänge, die bei der Übertragung von Signalen zwischen Nervenzellen eine Rolle spielen, lassen sich mit der STED-Mikroskopie klären. So erwarten Forscher, dass sich zukünftig damit viele Fragen der biologischen und medizinischen Forschung beantworten lassen. Ziel von Stefan Hell und seinen Mitarbeitern ist es nun, das Aufnahmeverfahren weiter zu optimieren. Für dessen Anwendung sieht Hell ein enormes Potential: "Erstmals Vorgänge auf der Nanoskala zu filmen, war ein wichtiger Schritt. Es stößt ein Tor auf zu neuen Erkenntnissen auf der molekularen Skala des Lebens - ein Tor, von dem man lange Zeit annahm, dass es das gar nicht gibt."

Zur Person

Prof. Stefan W. Hell, Jahrgang 1962, studierte Physik in Heidelberg. Nach seiner Promotion 1990 in Heidelberg verfolgte er seine Ideen zunächst als "freier Erfinder". Nach einer Zeit als Postdoktorand am EMBL in Heidelberg ging er 1993 als Gruppenleiter nach Turku, Finnland. Dort entwickelte er das Prinzip der STED-Mikroskopie. Im Jahr 1996 wechselte Hell als Leiter einer Max-Planck-Nachwuchsgruppe an das Göttinger Max-Planck-Institut für biophysikalische Chemie. Dort leitet er seit 2002 die Abteilung NanoBiophotonik. Stefan Hell ist wissenschaftliches Mitglied der Max-Planck-Gesellschaft und Honorarprofessor für Experimentalphysik an der Georg-August-Universität Göttingen. Er erhielt zahlreiche Preise und Auszeichnungen, darunter den Preis der "International Commission for Optics (ICO)" (2000), den Helmholtz-Preis (2002), den "Deutschen Zukunftspreis des Bundespräsidenten" (2006) sowie den Gottfried-Wilhelm-Leibniz-Preis (2008).

Originalveröffentlichung:

Volker Westphal, Silvio O. Rizzoli, Marcel A. Lauterbach, Dirk Kamin, Reinhard Jahn, Stefan W. Hell
Video-rate far-field optical nanoscopy dissects synaptic vesicle movement.
Science Express (Online-Veröffentlichung 21. Februar 2008)

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2008/pressemitteilung20080229/

Weitere Berichte zu: Botenstoff Lichtmikroskop Nervenzelle Vesikel Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften