Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zu Biosensoren mit Graphen

24.06.2015

Erstmals ist es einem Team gelungen, nicht nur präzise zu messen, sondern sogar zu steuern, wie stark eine Graphenschicht eine organische Verbindung absorbiert. Dies könnte in Zukunft ermöglichen, Graphen als empfindlichen Sensor für Biomoleküle zu nutzen.

Reiner Kohlenstoff tritt in vielfältiger Gestalt auf: zu den klassischen Strukturen von Diamant, Graphit und Kohle sind in letzter Zeit auch exotischere Geschwister dazugekommen, zum Beispiel Graphen. Die Struktur ähnelt einer Bienenwabe, sie besteht aus sechseckigen Maschen, an deren Ecken stets ein Kohlenstoffatom sitzt und ist nur eine einzige Atomschicht dick, also quasi zweidimensional. Dabei ist Graphen extrem leitfähig, völlig transparent und mechanisch wie chemisch äußerst belastbar.


Die Zeichnung veranschaulicht wie Maleimid-Verbindungen an der Graphenoberfläche andocken.

Illustration: Marc A. Gluba/HZB

Graphen ist bislang nicht sehr wählerisch

Dass Graphen sich grundsätzlich auch als hochempfindlicher Sensor zum Nachweis organischer Moleküle eignet, ist schon länger bekannt. Denn sobald fremde Moleküle andocken, sinkt die elektrische Leitfähigkeit des Graphens. Das Problem ist nur: Das passiert bei fast jedem Molekül, Graphen ist also nicht sehr selektiv, so dass unterschiedliche Moleküle nicht zu unterscheiden sind. So ist es als Sensor nicht zu gebrauchen.

Jetzt: Halterungen für "Schloss-Moleküle" angebracht

Nun hat ein Team vom HZB-Institut für Silizium-Photovoltaik einen interessanten Weg beschritten, um die Selektivität zu erhöhen: Es gelang ihnen, Graphen elektrochemisch zu funktionalisieren und für die Aufnahme von Sonden-Molekülen vorzubereiten. Dafür wurden aus einer organischen Lösung über dem Graphen para-Maleimidophenyl-Gruppen auf die Graphen-Oberfläche aufgebracht. Diese organischen Moleküle funktionieren wie Halterungen, an die im nächsten Schritt die Sonden-Moleküle angebracht werden können. „Aufgrund dieser Moleküle kann das Graphen nun, ähnlich dem Schlüssel-Schloss-Prinzip, zur Detektion von verschiedensten Stoffen verwendet werden“ erklärt Dr. Marc Gluba. Die „Schloss“-Moleküle auf der Oberfläche sind hoch selektiv und nehmen ausschließlich die passenden „Schlüssel“-Moleküle auf.

Großflächige Graphenproben am HZB

Auch andere Forschungsgruppen hatten schon in dieser Richtung Versuche angestellt, allerdings standen ihnen nur winzig kleine Graphenflöckchen mit Durchmessern im Mikrometerbereich zur Verfügung, so dass von den Rändern ausgelöste Effekte dominierten. Am HZB haben Physiker und Chemiker dagegen Graphenflächen von mehreren Quadratzentimetern hergestellt, so dass Randeffekte im Vergleich zu den Prozessen in der Fläche kaum noch eine Rolle spielen. Die Graphenschicht brachten sie auf einer Quarzmikrowaage auf. Jede Massenzunahme verändert dabei die Schwingfrequenz des Quarzkristalls, wodurch kleinste Massen bis hin zu Einzelmoleküllagen messbar werden.

Präzise Messung und Steuerung

„Wir konnten damit erstmals präzise und quantitativ nachweisen, wie viele Moleküle tatsächlich auf der Oberfläche des Graphens aufgebracht wurden“, berichtet der Nachwuchsforscher Felix Rösicke, der diese Frage für seine Doktorarbeit untersucht hat. „Mit Hilfe einer angelegten Spannung können wir darüber hinaus genau steuern, wie viele Moleküle am Graphen andocken“, erklärt Dr. Jörg Rappich vom HZB-Institut für Silizium-Photovoltaik, der Rösicke betreut.

„Die Hoffnungen, die sich mit Graphen verbinden, sind wirklich fantastisch“, sagt Prof. Dr. Norbert Nickel, Leiter der Arbeitsgruppe. Als Vision könne man sich zum Beispiel ein wirklich preisgünstiges „Lab on a Chip“ vorstellen, in das man einen einzigen Blutstropfen gibt, und sofort Werte für medizinisch interessante Parameter etc. erhält.

Anmerkung: Felix Rösicke führt seine Doktorarbeit im Rahmen der School of Analytical Sciences Adlerhof (SALSA) an der Humboldt-Universität zu Berlin und am HZB durch.

Publikation:
Quantifying the electrochemical maleimidation of large area graphene
F. Rösicke, M.A. Glubaa, K. Hinrichs, Guoguang Sun, N.H. Nickel, J. Rappich
doi:10.1016/j.elecom.2015.05.010

Weitere Informationen:

Dr. Jörg Rappich
Institut für Silizium-Photovoltaik
Tel.: +49 (0)30-8062-41386
rappich@helmholtz-berlin.de

Felix Rösicke
Institut für Silizium-Photovoltaik
Tel.: +49 (0)30-8062-41388
felix.roesicke@helmholtz-berlin.de

Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14235&sprache=de&ty...
http://www.sciencedirect.com/science/article/pii/S138824811500140X

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics