Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zu Biosensoren mit Graphen

24.06.2015

Erstmals ist es einem Team gelungen, nicht nur präzise zu messen, sondern sogar zu steuern, wie stark eine Graphenschicht eine organische Verbindung absorbiert. Dies könnte in Zukunft ermöglichen, Graphen als empfindlichen Sensor für Biomoleküle zu nutzen.

Reiner Kohlenstoff tritt in vielfältiger Gestalt auf: zu den klassischen Strukturen von Diamant, Graphit und Kohle sind in letzter Zeit auch exotischere Geschwister dazugekommen, zum Beispiel Graphen. Die Struktur ähnelt einer Bienenwabe, sie besteht aus sechseckigen Maschen, an deren Ecken stets ein Kohlenstoffatom sitzt und ist nur eine einzige Atomschicht dick, also quasi zweidimensional. Dabei ist Graphen extrem leitfähig, völlig transparent und mechanisch wie chemisch äußerst belastbar.


Die Zeichnung veranschaulicht wie Maleimid-Verbindungen an der Graphenoberfläche andocken.

Illustration: Marc A. Gluba/HZB

Graphen ist bislang nicht sehr wählerisch

Dass Graphen sich grundsätzlich auch als hochempfindlicher Sensor zum Nachweis organischer Moleküle eignet, ist schon länger bekannt. Denn sobald fremde Moleküle andocken, sinkt die elektrische Leitfähigkeit des Graphens. Das Problem ist nur: Das passiert bei fast jedem Molekül, Graphen ist also nicht sehr selektiv, so dass unterschiedliche Moleküle nicht zu unterscheiden sind. So ist es als Sensor nicht zu gebrauchen.

Jetzt: Halterungen für "Schloss-Moleküle" angebracht

Nun hat ein Team vom HZB-Institut für Silizium-Photovoltaik einen interessanten Weg beschritten, um die Selektivität zu erhöhen: Es gelang ihnen, Graphen elektrochemisch zu funktionalisieren und für die Aufnahme von Sonden-Molekülen vorzubereiten. Dafür wurden aus einer organischen Lösung über dem Graphen para-Maleimidophenyl-Gruppen auf die Graphen-Oberfläche aufgebracht. Diese organischen Moleküle funktionieren wie Halterungen, an die im nächsten Schritt die Sonden-Moleküle angebracht werden können. „Aufgrund dieser Moleküle kann das Graphen nun, ähnlich dem Schlüssel-Schloss-Prinzip, zur Detektion von verschiedensten Stoffen verwendet werden“ erklärt Dr. Marc Gluba. Die „Schloss“-Moleküle auf der Oberfläche sind hoch selektiv und nehmen ausschließlich die passenden „Schlüssel“-Moleküle auf.

Großflächige Graphenproben am HZB

Auch andere Forschungsgruppen hatten schon in dieser Richtung Versuche angestellt, allerdings standen ihnen nur winzig kleine Graphenflöckchen mit Durchmessern im Mikrometerbereich zur Verfügung, so dass von den Rändern ausgelöste Effekte dominierten. Am HZB haben Physiker und Chemiker dagegen Graphenflächen von mehreren Quadratzentimetern hergestellt, so dass Randeffekte im Vergleich zu den Prozessen in der Fläche kaum noch eine Rolle spielen. Die Graphenschicht brachten sie auf einer Quarzmikrowaage auf. Jede Massenzunahme verändert dabei die Schwingfrequenz des Quarzkristalls, wodurch kleinste Massen bis hin zu Einzelmoleküllagen messbar werden.

Präzise Messung und Steuerung

„Wir konnten damit erstmals präzise und quantitativ nachweisen, wie viele Moleküle tatsächlich auf der Oberfläche des Graphens aufgebracht wurden“, berichtet der Nachwuchsforscher Felix Rösicke, der diese Frage für seine Doktorarbeit untersucht hat. „Mit Hilfe einer angelegten Spannung können wir darüber hinaus genau steuern, wie viele Moleküle am Graphen andocken“, erklärt Dr. Jörg Rappich vom HZB-Institut für Silizium-Photovoltaik, der Rösicke betreut.

„Die Hoffnungen, die sich mit Graphen verbinden, sind wirklich fantastisch“, sagt Prof. Dr. Norbert Nickel, Leiter der Arbeitsgruppe. Als Vision könne man sich zum Beispiel ein wirklich preisgünstiges „Lab on a Chip“ vorstellen, in das man einen einzigen Blutstropfen gibt, und sofort Werte für medizinisch interessante Parameter etc. erhält.

Anmerkung: Felix Rösicke führt seine Doktorarbeit im Rahmen der School of Analytical Sciences Adlerhof (SALSA) an der Humboldt-Universität zu Berlin und am HZB durch.

Publikation:
Quantifying the electrochemical maleimidation of large area graphene
F. Rösicke, M.A. Glubaa, K. Hinrichs, Guoguang Sun, N.H. Nickel, J. Rappich
doi:10.1016/j.elecom.2015.05.010

Weitere Informationen:

Dr. Jörg Rappich
Institut für Silizium-Photovoltaik
Tel.: +49 (0)30-8062-41386
rappich@helmholtz-berlin.de

Felix Rösicke
Institut für Silizium-Photovoltaik
Tel.: +49 (0)30-8062-41388
felix.roesicke@helmholtz-berlin.de

Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14235&sprache=de&ty...
http://www.sciencedirect.com/science/article/pii/S138824811500140X

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie