Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3-D-Film zeigt das Innere fliegender Insekten

26.03.2014

Mithilfe von Röntgenlicht aus einem Teilchenbeschleuniger konnten Hochgeschwindigkeitsaufnahmen der Flugmuskeln von Fliegen in 3-D erstellt werden.

Ein Team der Oxford University, des Imperial College (London) und des Paul Scherrer Instituts PSI entwickelte an der Synchrotron Lichtquelle Schweiz SLS des PSI ein bahnbrechendes CT-Aufnahmeverfahren, mit dem sie das Innere von fliegenden Insekten filmen konnten. Die Filme gewähren einen Einblick in das Innere eines der komplexesten Mechanismen der Natur und zeigen, dass Strukturverformungen entscheidend dafür sind, wie eine Fliege ihren Flügelschlag steuert.


Das Innere des Brustkorbs der untersuchten Fliegen. Sichtbar sind die fünf untersuchten Steuermuskeln (grün bis blau) und die Kraftmuskeln (gelb bis rot)

Abbildung aus der Veröffentlichung, Verwendung unter Nennung der Quelle gestattet.

In der Zeit eines menschlichen Augenaufschlags kann eine Schmeissfliege 50-mal mit ihren Flügeln schlagen und dabei jeden einzelnen Flügelschlag mit zahlreichen winzigen Steuermuskeln kontrollieren – manche davon sind so dünn wie ein Menschenhaar.

In den membranartigen Flügeln selbst sitzen keinerlei Muskeln; alle Flugmuskeln sind unsichtbar im Brustkorb versteckt. „Das Gewebe im Brustkorb der Fliege lässt kein sichtbares Licht durch, kann aber mit Röntgenstrahlen durchleuchtet werden“, erklärt Rajmund Mokso, der für den Versuch verantwortliche Forscher am PSI.

„Indem wir die Fliegen in einem speziellen Versuchsaufbau für Hochgeschwindigkeitsaufnahmen an der Synchrotron Lichtquelle Schweiz herumdrehten, konnten wir mit hoher Geschwindigkeit einzelne zweidimensionale Röntgenaufnahmen anfertigen, auf denen die Flugmuskulatur in allen Phasen des Flügelschlags aus mehreren Blickwinkeln zu sehen war. Diese Aufnahmen haben wir zu 3-D-Filmen der Flugmuskeln kombiniert.“

Langjährige Entwicklung

„Mit diesem Versuch wurde ein Meilenstein in der tomografischen Mikroskopie mit Röntgenstrahlung erreicht. Es lassen sich Einzelheiten der Muskulatur der Fliege in einer Grössenordnung von einigen Tausendstelmillimetern erkennen, sodass wir ihre Bewegung mit einer bisher einmaligen Zeitauflösung verfolgen können“, erläutert Marco Stampanoni, Leiter der Forschungsgruppe Röntgentomografie am PSI und Professor an der ETH Zürich. „Dies ist das Ergebnis einer langjährigen Entwicklungsarbeit von Forschenden am PSI, dank der sich die SLS auf dem Gebiet der tomografischen Bildgebung an der vordersten Front der Entwicklung befindet.“

Kleine Muskeln steuern grosse Muskeln

Als Reaktion auf das Herumdrehen im Versuchsaufbau versuchten die Fliegen, in die entgegengesetzte Richtung zu fliegen. So ermöglichten sie den Forschenden die Aufzeichnung der asymmetrischen Muskelbewegungen beim Kurvenflug. „Die Steuermuskeln machen weniger als 3 % der Gesamtmasse der Flugmuskulatur einer Fliege aus“, erklärt Graham Taylor, der die Studie in Oxford leitete. „Daher war es eine der Kernfragen, wie die Steuermuskeln die Leistung der viel grösseren Kraftmuskeln beeinflussen können. Die Kraftmuskeln arbeiten symmetrisch, jedoch kann die Fliege bei jedem Flügel – durch den Wechsel zwischen verschiedenen Schwingungsarten – Kraft in einen auf die Absorption mechanischer Energie spezialisierten Steuermuskel umleiten, ähnlich wie die Gangschaltung beim Auto, die beim Herunterschalten eine Bremswirkung erzielt.“

Das wohl komplexeste Gelenk

Die Forschenden erhoffen sich, ihre Ergebnisse für den Entwurf von neuen mikromechanischen Geräten nutzen zu können. „Die Fliegen haben hier ein Problem gelöst, vor dem Ingenieure in demselben Grössenbereich stehen“, so Taylor: „Wie werden verhältnismässig grosse, komplexe Bewegungen in drei Dimensionen mit mechanischen Komponenten generiert, die eigentlich nur kleine, einfache Bewegungen im Eindimensionalen erzeugen können?“ Das geniale Design des Flugmotors der Schmeissfliege löst dieses Problem auf grossartige Weise, wie die Ergebnisse dieser Studie zeigen. Simon Walker aus Oxford, der zusammen mit Daniel Schwyn Ko-Erstautor der Studie ist, fügt hinzu: „Das Flügellager der Fliege ist wohl das komplexeste Gelenk, das in der Natur vorkommt. Es ist das Ergebnis von über 300 Millionen Jahren evolutionärer Vervollkommnung. Das Ergebnis ist ein Mechanismus, der sich enorm von den herkömmlichen Konstruktionen unterscheidet, die von Menschen geschaffen wurden. Er setzt auf Krümmen und Beugen, statt wie ein Uhrwerk zu laufen.“

Text auf Grundlage einer Medienmitteilung der Universität Oxford

Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Lernende, Doktorierende oder Postdoktorierende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.

Kontakt / Ansprechpartner:

Prof. Graham Taylor ist Associate Professor für mathematische Biologie am Fachbereich Zoologie der Universität Oxford. Tel. +44 1865 271219; graham.taylor@zoo.ox.ac.uk

Dr. Simon Walker ist ein Royal Society University Research Fellow am Fachbereich Zoologie der Universität Oxford. Tel. +44 1865 271223; simon.walker@zoo.ox.ac.uk

Für Informationen zu den bildgebenden Verfahren wenden Sie sich bitte an Dr. Rajmund Mokso, Strahllinien-Wissenschaftler am Paul Scherrer Institut; Tel. +41 56 310 5628; rajmund.mokso@psi.ch

Für Informationen zur sensorischen Motorsteuerung von Insekten wenden Sie sich an den Leiter für Neurobiologie Dr. Holger Krapp, Reader (associate Professor) für Systemische Neurowissenschaften, am Fachbereich Bioengineering des Imperial College London, Tel. +44 20 7594 2014; h.g.krapp@imperial.ac.uk

Originalveröffentlichung:
Walker, SM, Schwyn, DA, Mokso, R, Wicklein, M, Müller, T, Doube, M, Stampanoni, M, Krapp, HG, Taylor, GK. In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor. PLoS Biol 12(3): e1001823 (2014). doi:10.1371/journal.pbio.1001823 http://dx.doi.org/10.1371/journal.pbio.1001823

Zuwendungen:
Die Forschungsarbeiten, die zu diesen Ergebnissen führten, wurden mit Mitteln aus dem 7. Forschungsrahmenprogramm der Europäischen Gemeinschaft (FP7/2007-2013) unter der Finanzhilfevereinbarung Nr. 226716 und der EFR-Finanzhilfevereinbarung Nr. 204513 an GT unterstützt. Die instrumentelle Ausrüstung wurde durch PSI FOKO-Mittel unterstützt (Anträge Nr. 20100810 und 20110908).

Weitere Informationen:

http://youtu.be/P6lBkK3J9wg - Film 1
http://youtu.be/ehG4G-NOTQg - Film 2
http://youtu.be/mVL6cWbOZRQ - Film 3

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Brustkorb Energie Fliege Flugmuskeln Insekten Muskeln PSI Scherrer Stampanoni Synchrotron Versuchsaufbau Zoologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

nachricht Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad
24.03.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Proteintransport - Stau in der Zelle

24.03.2017 | Physik Astronomie

Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel

24.03.2017 | Verfahrenstechnologie

Der steile Aufstieg der Berner Alpen

24.03.2017 | Geowissenschaften