Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3-D-Film zeigt das Innere fliegender Insekten

26.03.2014

Mithilfe von Röntgenlicht aus einem Teilchenbeschleuniger konnten Hochgeschwindigkeitsaufnahmen der Flugmuskeln von Fliegen in 3-D erstellt werden.

Ein Team der Oxford University, des Imperial College (London) und des Paul Scherrer Instituts PSI entwickelte an der Synchrotron Lichtquelle Schweiz SLS des PSI ein bahnbrechendes CT-Aufnahmeverfahren, mit dem sie das Innere von fliegenden Insekten filmen konnten. Die Filme gewähren einen Einblick in das Innere eines der komplexesten Mechanismen der Natur und zeigen, dass Strukturverformungen entscheidend dafür sind, wie eine Fliege ihren Flügelschlag steuert.


Das Innere des Brustkorbs der untersuchten Fliegen. Sichtbar sind die fünf untersuchten Steuermuskeln (grün bis blau) und die Kraftmuskeln (gelb bis rot)

Abbildung aus der Veröffentlichung, Verwendung unter Nennung der Quelle gestattet.

In der Zeit eines menschlichen Augenaufschlags kann eine Schmeissfliege 50-mal mit ihren Flügeln schlagen und dabei jeden einzelnen Flügelschlag mit zahlreichen winzigen Steuermuskeln kontrollieren – manche davon sind so dünn wie ein Menschenhaar.

In den membranartigen Flügeln selbst sitzen keinerlei Muskeln; alle Flugmuskeln sind unsichtbar im Brustkorb versteckt. „Das Gewebe im Brustkorb der Fliege lässt kein sichtbares Licht durch, kann aber mit Röntgenstrahlen durchleuchtet werden“, erklärt Rajmund Mokso, der für den Versuch verantwortliche Forscher am PSI.

„Indem wir die Fliegen in einem speziellen Versuchsaufbau für Hochgeschwindigkeitsaufnahmen an der Synchrotron Lichtquelle Schweiz herumdrehten, konnten wir mit hoher Geschwindigkeit einzelne zweidimensionale Röntgenaufnahmen anfertigen, auf denen die Flugmuskulatur in allen Phasen des Flügelschlags aus mehreren Blickwinkeln zu sehen war. Diese Aufnahmen haben wir zu 3-D-Filmen der Flugmuskeln kombiniert.“

Langjährige Entwicklung

„Mit diesem Versuch wurde ein Meilenstein in der tomografischen Mikroskopie mit Röntgenstrahlung erreicht. Es lassen sich Einzelheiten der Muskulatur der Fliege in einer Grössenordnung von einigen Tausendstelmillimetern erkennen, sodass wir ihre Bewegung mit einer bisher einmaligen Zeitauflösung verfolgen können“, erläutert Marco Stampanoni, Leiter der Forschungsgruppe Röntgentomografie am PSI und Professor an der ETH Zürich. „Dies ist das Ergebnis einer langjährigen Entwicklungsarbeit von Forschenden am PSI, dank der sich die SLS auf dem Gebiet der tomografischen Bildgebung an der vordersten Front der Entwicklung befindet.“

Kleine Muskeln steuern grosse Muskeln

Als Reaktion auf das Herumdrehen im Versuchsaufbau versuchten die Fliegen, in die entgegengesetzte Richtung zu fliegen. So ermöglichten sie den Forschenden die Aufzeichnung der asymmetrischen Muskelbewegungen beim Kurvenflug. „Die Steuermuskeln machen weniger als 3 % der Gesamtmasse der Flugmuskulatur einer Fliege aus“, erklärt Graham Taylor, der die Studie in Oxford leitete. „Daher war es eine der Kernfragen, wie die Steuermuskeln die Leistung der viel grösseren Kraftmuskeln beeinflussen können. Die Kraftmuskeln arbeiten symmetrisch, jedoch kann die Fliege bei jedem Flügel – durch den Wechsel zwischen verschiedenen Schwingungsarten – Kraft in einen auf die Absorption mechanischer Energie spezialisierten Steuermuskel umleiten, ähnlich wie die Gangschaltung beim Auto, die beim Herunterschalten eine Bremswirkung erzielt.“

Das wohl komplexeste Gelenk

Die Forschenden erhoffen sich, ihre Ergebnisse für den Entwurf von neuen mikromechanischen Geräten nutzen zu können. „Die Fliegen haben hier ein Problem gelöst, vor dem Ingenieure in demselben Grössenbereich stehen“, so Taylor: „Wie werden verhältnismässig grosse, komplexe Bewegungen in drei Dimensionen mit mechanischen Komponenten generiert, die eigentlich nur kleine, einfache Bewegungen im Eindimensionalen erzeugen können?“ Das geniale Design des Flugmotors der Schmeissfliege löst dieses Problem auf grossartige Weise, wie die Ergebnisse dieser Studie zeigen. Simon Walker aus Oxford, der zusammen mit Daniel Schwyn Ko-Erstautor der Studie ist, fügt hinzu: „Das Flügellager der Fliege ist wohl das komplexeste Gelenk, das in der Natur vorkommt. Es ist das Ergebnis von über 300 Millionen Jahren evolutionärer Vervollkommnung. Das Ergebnis ist ein Mechanismus, der sich enorm von den herkömmlichen Konstruktionen unterscheidet, die von Menschen geschaffen wurden. Er setzt auf Krümmen und Beugen, statt wie ein Uhrwerk zu laufen.“

Text auf Grundlage einer Medienmitteilung der Universität Oxford

Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Lernende, Doktorierende oder Postdoktorierende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.

Kontakt / Ansprechpartner:

Prof. Graham Taylor ist Associate Professor für mathematische Biologie am Fachbereich Zoologie der Universität Oxford. Tel. +44 1865 271219; graham.taylor@zoo.ox.ac.uk

Dr. Simon Walker ist ein Royal Society University Research Fellow am Fachbereich Zoologie der Universität Oxford. Tel. +44 1865 271223; simon.walker@zoo.ox.ac.uk

Für Informationen zu den bildgebenden Verfahren wenden Sie sich bitte an Dr. Rajmund Mokso, Strahllinien-Wissenschaftler am Paul Scherrer Institut; Tel. +41 56 310 5628; rajmund.mokso@psi.ch

Für Informationen zur sensorischen Motorsteuerung von Insekten wenden Sie sich an den Leiter für Neurobiologie Dr. Holger Krapp, Reader (associate Professor) für Systemische Neurowissenschaften, am Fachbereich Bioengineering des Imperial College London, Tel. +44 20 7594 2014; h.g.krapp@imperial.ac.uk

Originalveröffentlichung:
Walker, SM, Schwyn, DA, Mokso, R, Wicklein, M, Müller, T, Doube, M, Stampanoni, M, Krapp, HG, Taylor, GK. In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor. PLoS Biol 12(3): e1001823 (2014). doi:10.1371/journal.pbio.1001823 http://dx.doi.org/10.1371/journal.pbio.1001823

Zuwendungen:
Die Forschungsarbeiten, die zu diesen Ergebnissen führten, wurden mit Mitteln aus dem 7. Forschungsrahmenprogramm der Europäischen Gemeinschaft (FP7/2007-2013) unter der Finanzhilfevereinbarung Nr. 226716 und der EFR-Finanzhilfevereinbarung Nr. 204513 an GT unterstützt. Die instrumentelle Ausrüstung wurde durch PSI FOKO-Mittel unterstützt (Anträge Nr. 20100810 und 20110908).

Weitere Informationen:

http://youtu.be/P6lBkK3J9wg - Film 1
http://youtu.be/ehG4G-NOTQg - Film 2
http://youtu.be/mVL6cWbOZRQ - Film 3

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Brustkorb Energie Fliege Flugmuskeln Insekten Muskeln PSI Scherrer Stampanoni Synchrotron Versuchsaufbau Zoologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau