Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3-D-Film zeigt das Innere fliegender Insekten

26.03.2014

Mithilfe von Röntgenlicht aus einem Teilchenbeschleuniger konnten Hochgeschwindigkeitsaufnahmen der Flugmuskeln von Fliegen in 3-D erstellt werden.

Ein Team der Oxford University, des Imperial College (London) und des Paul Scherrer Instituts PSI entwickelte an der Synchrotron Lichtquelle Schweiz SLS des PSI ein bahnbrechendes CT-Aufnahmeverfahren, mit dem sie das Innere von fliegenden Insekten filmen konnten. Die Filme gewähren einen Einblick in das Innere eines der komplexesten Mechanismen der Natur und zeigen, dass Strukturverformungen entscheidend dafür sind, wie eine Fliege ihren Flügelschlag steuert.


Das Innere des Brustkorbs der untersuchten Fliegen. Sichtbar sind die fünf untersuchten Steuermuskeln (grün bis blau) und die Kraftmuskeln (gelb bis rot)

Abbildung aus der Veröffentlichung, Verwendung unter Nennung der Quelle gestattet.

In der Zeit eines menschlichen Augenaufschlags kann eine Schmeissfliege 50-mal mit ihren Flügeln schlagen und dabei jeden einzelnen Flügelschlag mit zahlreichen winzigen Steuermuskeln kontrollieren – manche davon sind so dünn wie ein Menschenhaar.

In den membranartigen Flügeln selbst sitzen keinerlei Muskeln; alle Flugmuskeln sind unsichtbar im Brustkorb versteckt. „Das Gewebe im Brustkorb der Fliege lässt kein sichtbares Licht durch, kann aber mit Röntgenstrahlen durchleuchtet werden“, erklärt Rajmund Mokso, der für den Versuch verantwortliche Forscher am PSI.

„Indem wir die Fliegen in einem speziellen Versuchsaufbau für Hochgeschwindigkeitsaufnahmen an der Synchrotron Lichtquelle Schweiz herumdrehten, konnten wir mit hoher Geschwindigkeit einzelne zweidimensionale Röntgenaufnahmen anfertigen, auf denen die Flugmuskulatur in allen Phasen des Flügelschlags aus mehreren Blickwinkeln zu sehen war. Diese Aufnahmen haben wir zu 3-D-Filmen der Flugmuskeln kombiniert.“

Langjährige Entwicklung

„Mit diesem Versuch wurde ein Meilenstein in der tomografischen Mikroskopie mit Röntgenstrahlung erreicht. Es lassen sich Einzelheiten der Muskulatur der Fliege in einer Grössenordnung von einigen Tausendstelmillimetern erkennen, sodass wir ihre Bewegung mit einer bisher einmaligen Zeitauflösung verfolgen können“, erläutert Marco Stampanoni, Leiter der Forschungsgruppe Röntgentomografie am PSI und Professor an der ETH Zürich. „Dies ist das Ergebnis einer langjährigen Entwicklungsarbeit von Forschenden am PSI, dank der sich die SLS auf dem Gebiet der tomografischen Bildgebung an der vordersten Front der Entwicklung befindet.“

Kleine Muskeln steuern grosse Muskeln

Als Reaktion auf das Herumdrehen im Versuchsaufbau versuchten die Fliegen, in die entgegengesetzte Richtung zu fliegen. So ermöglichten sie den Forschenden die Aufzeichnung der asymmetrischen Muskelbewegungen beim Kurvenflug. „Die Steuermuskeln machen weniger als 3 % der Gesamtmasse der Flugmuskulatur einer Fliege aus“, erklärt Graham Taylor, der die Studie in Oxford leitete. „Daher war es eine der Kernfragen, wie die Steuermuskeln die Leistung der viel grösseren Kraftmuskeln beeinflussen können. Die Kraftmuskeln arbeiten symmetrisch, jedoch kann die Fliege bei jedem Flügel – durch den Wechsel zwischen verschiedenen Schwingungsarten – Kraft in einen auf die Absorption mechanischer Energie spezialisierten Steuermuskel umleiten, ähnlich wie die Gangschaltung beim Auto, die beim Herunterschalten eine Bremswirkung erzielt.“

Das wohl komplexeste Gelenk

Die Forschenden erhoffen sich, ihre Ergebnisse für den Entwurf von neuen mikromechanischen Geräten nutzen zu können. „Die Fliegen haben hier ein Problem gelöst, vor dem Ingenieure in demselben Grössenbereich stehen“, so Taylor: „Wie werden verhältnismässig grosse, komplexe Bewegungen in drei Dimensionen mit mechanischen Komponenten generiert, die eigentlich nur kleine, einfache Bewegungen im Eindimensionalen erzeugen können?“ Das geniale Design des Flugmotors der Schmeissfliege löst dieses Problem auf grossartige Weise, wie die Ergebnisse dieser Studie zeigen. Simon Walker aus Oxford, der zusammen mit Daniel Schwyn Ko-Erstautor der Studie ist, fügt hinzu: „Das Flügellager der Fliege ist wohl das komplexeste Gelenk, das in der Natur vorkommt. Es ist das Ergebnis von über 300 Millionen Jahren evolutionärer Vervollkommnung. Das Ergebnis ist ein Mechanismus, der sich enorm von den herkömmlichen Konstruktionen unterscheidet, die von Menschen geschaffen wurden. Er setzt auf Krümmen und Beugen, statt wie ein Uhrwerk zu laufen.“

Text auf Grundlage einer Medienmitteilung der Universität Oxford

Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Lernende, Doktorierende oder Postdoktorierende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.

Kontakt / Ansprechpartner:

Prof. Graham Taylor ist Associate Professor für mathematische Biologie am Fachbereich Zoologie der Universität Oxford. Tel. +44 1865 271219; graham.taylor@zoo.ox.ac.uk

Dr. Simon Walker ist ein Royal Society University Research Fellow am Fachbereich Zoologie der Universität Oxford. Tel. +44 1865 271223; simon.walker@zoo.ox.ac.uk

Für Informationen zu den bildgebenden Verfahren wenden Sie sich bitte an Dr. Rajmund Mokso, Strahllinien-Wissenschaftler am Paul Scherrer Institut; Tel. +41 56 310 5628; rajmund.mokso@psi.ch

Für Informationen zur sensorischen Motorsteuerung von Insekten wenden Sie sich an den Leiter für Neurobiologie Dr. Holger Krapp, Reader (associate Professor) für Systemische Neurowissenschaften, am Fachbereich Bioengineering des Imperial College London, Tel. +44 20 7594 2014; h.g.krapp@imperial.ac.uk

Originalveröffentlichung:
Walker, SM, Schwyn, DA, Mokso, R, Wicklein, M, Müller, T, Doube, M, Stampanoni, M, Krapp, HG, Taylor, GK. In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor. PLoS Biol 12(3): e1001823 (2014). doi:10.1371/journal.pbio.1001823 http://dx.doi.org/10.1371/journal.pbio.1001823

Zuwendungen:
Die Forschungsarbeiten, die zu diesen Ergebnissen führten, wurden mit Mitteln aus dem 7. Forschungsrahmenprogramm der Europäischen Gemeinschaft (FP7/2007-2013) unter der Finanzhilfevereinbarung Nr. 226716 und der EFR-Finanzhilfevereinbarung Nr. 204513 an GT unterstützt. Die instrumentelle Ausrüstung wurde durch PSI FOKO-Mittel unterstützt (Anträge Nr. 20100810 und 20110908).

Weitere Informationen:

http://youtu.be/P6lBkK3J9wg - Film 1
http://youtu.be/ehG4G-NOTQg - Film 2
http://youtu.be/mVL6cWbOZRQ - Film 3

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Brustkorb Energie Fliege Flugmuskeln Insekten Muskeln PSI Scherrer Stampanoni Synchrotron Versuchsaufbau Zoologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie