Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer SFB an der Uni Stuttgart: Wissenschaftler lassen Milliarden Moleküle tanzen

13.12.2006
Ein neuer Sonderforschungsbereich (SFB) an der Universität Stuttgart wird es erlauben, in den Ingenieur- und Naturwissenschaften in Gebiete vorzustoßen, in denen klassische Ansätze bisher versagen. So wollen die Wissenschaftler beispielsweise Prozesse beim Laserbohren oder beim Transport von Proteinen simulieren.

Der jetzt von der Deutschen Forschungsgemeinschaft (DFG) genehmigte SFB 716 mit dem Titel "Dynamische Simulation von Systemen mit großen Teilchenzahlen" wird sich mit dynamischen Simulationen von Systemen mit einigen 10.000 bis zu vielen Milliarden Teilchen befassen. Die Bewilligung gilt für die erste, vierjährige Förderperiode, die im Januar 2007 startet. Insgesamt soll der SFB über zwölf Jahre laufen und mit einer Summe von etwa 15 Millionen Euro gefördert werden. Damit sind an der Universität Stuttgart acht Sonderforschungsbereiche, ein transregionaler SFB und vier Transferbereiche angesiedelt.

"Mit dem neuen Sonderforschungsbereich bestätigt die DFG die herausragende Kompetenz der Universität Stuttgart auf den Gebieten des Höchstleistungsrechnens und der Visualisierung", freut sich der Rektor der Universität Stuttgart, Prof. Wolfram Ressel. "Zudem ist der SFB eine wirklich interdisziplinäre Initiative, die über die traditionellen Fakultätsgrenzen hinweg exzellente Wissenschaftler zusammenbringt." Im SFB 716 werden Forscher aus dem Maschinenbau, der Physik, der Chemie und der Informatik eng zusammenarbeiten. In all diesen Bereichen werden schon seit langem Methoden der dynamischen Simulation eingesetzt. "Die enge Verbindung zwischen Anwendern aus den Ingenieur- und Naturwissenschaften und Informatikern im neuen SFB ist für das, was wir vorhaben, entscheidend", sagt Prof. Hans Hasse, Direktor des Instituts für Technische Thermodynamik und Thermische Verfahrenstechnik der Universität Stuttgart und Sprecher des Sonderforschungsbereichs. "Jetzt marschieren wir gemeinsam in einem leistungsfähigen Verbund, wie es ihn sonst nirgends auf der Welt gibt."

Potential für die Industrie

Anwendungen für dynamische Simulationen mit großen Teilchenzahlen finden sich beispielsweise in der Mechanik und Thermodynamik, in den Materialwissenschaften sowie in der Bio- und Nanotechnologie. Doch schon bei einigen tausend Teilchen erfordern solche Simulationen Methoden des Höchstleistungsrechnens, bei Teilchenzahlen von einigen Millionen ist die Grenze des derzeit Machbaren erreicht. Deshalb will der neue SFB die Methoden der dynamischen Simulation von Systemen mit großen Teilchenzahlen so weiterentwickeln, dass ihr Potential in Zukunft auch in der industriellen Forschung und Entwicklung genutzt werden kann.

Im Mittelpunkt des Forschungsprogramms stehen Pilotprojekte, in denen unmittelbar Erkenntnisse gewonnen werden, die mit anderen Methoden nicht zu erzielen sind. So wollen die Wissenschaftler die Prozesse beim Laserbohren simulieren, wovon man sich neue Einsichten in die Mechanismen des Prozesses und letztlich Möglichkeiten zu seiner Verbesserung erhofft. Ein weiteres Beispiel ist der Transport von Proteinen in Kanälen von Zellmembranen. Diesen Vorgang verstehen Wissenschaftler bis heute nur unzureichend - und das, obwohl er für alles Leben von zentraler Bedeutung ist.

Weltrekord im Höchstleistungsrechnen angepeilt

Für die Forschung im Bereich der dynamischen Simulation von Systemen mit großen Teilchenzahlen ist die Universität Stuttgart ein idealer Standort. So hielten die Arbeitsgruppe von Prof. Hans-Rainer Trebin vom Institut für Theoretische und Angewandte Physik bis zum Jahr 2004 den Weltrekord für die Simulation mit der höchsten Teilchenzahl, zuletzt mit fünf Milliarden Teilchen. "Den Weltrekord holen wir uns zurück", so die einhellige Meinung im neuen SFB. Die Chancen dafür stehen gut, denn mit dem Höchstleistungsrechenzentrum Stuttgart (HLRS) verfügt die Uni über einen der schnellsten und leistungsfähigsten Supercomputer Europas.

Auch die Visualisierung der Simulationsergebnisse spielt für die Arbeiten im SFB 716 eine zentrale Rolle. "Sie wird neue Einsichten in die Dynamik molekularer Welten liefern", so Prof. Thomas Ertl vom Institut für Visualisierung. "Allerdings stellt sie bei den im SFB 716 betrachteten extrem großen Teilchenzahlen auch höchste Anforderungen an die Visualisierungsalgorithmen und die Graphikhardware". Auch hier ist die Universität Stuttgart gut aufgestellt. So wurde dort erst vor wenigen Monaten das neue Visualisierungsinstitut VISUS gegründet, das mit zwei Teilprojekten in den neuen SFB integriert ist.

Weitere Informationen bei Prof. Hans Hasse, Direktor des Instituts für Technische Thermodynamik und Thermische Verfahrenstechnik der Universität Stuttgart, Tel. 0711/685-66105, e-mail hasse@itt.uni-stuttgart.de.

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Berichte zu: Simulation Teilchenzahl Thermodynamik

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Gleich und Gleich gesellt sich gern!
21.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Internationaler Masterstudiengang: TU Kaiserslautern bildet Experten für die Quantentechnik aus
15.03.2017 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen