Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was ist Materie? Neue Entwicklungen in der Forschung verändern unser Weltbild

12.09.2002


Freiburger Sommerschule für Theoretische Physik ermöglicht jungen Studierenden Einblicke in moderne Forschungsthemen

Was ist Materie? Diese Frage ist wohl fast so alt wie die Menschheit selbst und hat im Laufe der Geschichte immer wieder zu umfassenden philosophischen Spekulationen geführt. Neueste Forschungsentwicklungen in der theoretischen Physik zeigen uns aber, dass Materie mehr ist als nur das, was wir im eigentlichen Sinn des Wortes sinnlich "be-greifen" können. Damit steht letztlich auch unser gesamtes Weltbild zur Disposition. Solche und ähnliche Fragen stehen im Mittelpunkt der zweiten "Freiburger Sommerschule für Theoretische Physik", die von Montag, den 16. September, bis Freitag, den 20. September 2001, an der Freiburger Albert-Ludwigs-Universität stattfindet und zu der die Veranstalter wieder 35 Studierende aus ganz Deutschland erwarten, um sich über die neuesten Forschungsthemen zu informieren.

Verantwortlich für dieses Projekt sind die beiden Freiburger Physik-Dozenten Privatdozent Dr. Domenico Giulini und Professor Dr. Francesco Petruccione: Sie haben im letzten Jahr das bundesweit einmalige Projekt der Freiburger Sommerschule für Theoretische Physik mit Hilfe von Stiftungsgeldern des Istituto Italiano per gli Studi Filosofici in Neapel sowie durch Sponsorenbeiträge der Buchhandlung Lehmanns aus Freiburg ins Leben gerufen.


Einsteins Allgemeine Relativitätstheorie erlaubt Rückschlüsse auf "Schwarze Löcher" und exotische Materie

Täglich machen wir die Erfahrung, dass materielle Objekte der Schwerkraft (etwa beim zu Boden fallen) und Trägheitskräften (spürbar beim Beschleunigen oder Abbremsen) unterliegen. Diese beiden Phänomene werden in der gegenwärtigen Physik durch Einsteins "Allgemeine Relativitätstheorie" aus dem Jahre 1915 mathematisch einheitlich beschrieben. Diese erklärt nicht nur alle Himmelserscheinungen im Zusammenhang mit der Bewegung der Planeten in unserem Sonnensystem, sondern reicht in ihrer Gültigkeit weit darüber hinaus, sei es bis zu den größten uns heute durch Beobachtungen zugänglichen Distanzen (13 Milliarden Lichtjahre) oder den extremen Bedingungen, wie sie in den Zentren von Galaxien herrschen, etwa unserer eigenen, die wir in klaren Nächten als Milchstraße wahrnehmen können.

Durch die Theorie Einsteins wird nun die Bewegung astronomisch wahrnehmbarer Objekte mit der vor Ort vorliegenden Materie und Energieverteilung verknüpft. Modernste astronomische Methoden hochauflösender Bewegungsmessungen an entfernten Objekten erlauben somit genaue Rückschlüsse auf die dort vorhandene Materie. Dabei ergaben sich u.a. in jüngster Zeit zwei erstaunliche Resultate:

1. Das Zentrum unserer sowie vieler anderer Galaxien beherbergt ein extrem kompaktes Objekt von mehr als einer Millionen Sonnenmassen. Dabei kann es sich nach heutigen Vorstellungen nur um ein so genanntes Schwarzes Loch handeln, dessen Gravitationskraft selbst Licht am entweichen hindert. Dies ist auch der Grund, dass man das "Schwarze Loch" eigentlich nicht sieht sondern eben nur durch seine Umgebungseinflüsse indirekt erschließen kann. Kollidieren solche Schwarzen Löcher so können sie extreme Mengen einer neuartigen Strahlung freisetzen, die sogenannte "Gravitationsstrahlung", die zwar von Einstein bereits 1918 vorausgesagt wurde, aber bisher noch nicht direkt nachgewiesen werden konnte. Vor 6 Monaten haben die weltweit ersten Großexperimente zum Nachweis dieser Strahlung bei Hannover und in den USA ihren Betrieb aufgenommen.

2. Die Gesamtmenge an gravitativ nachweisbarer Masse bzw. Energie übersteigt bei weitem die Menge der mit anderen Methoden nachgewiesenen. Wenn es bei den Ergebnissen dieser Präzisionsmessungen der letzten zwei Jahre bleibt, stehen wir vor der frappierenden Tatsache, dass etwa 95 Prozent der gravitativ nachweisbaren Masse bzw. Energie im Universum nicht in das Weltbild der heutigen Physik passt. Man spricht in diesem Zusammenhang von "dunkler Materie". Zur Zeit gibt es eine handvoll konkurrierender theoretischer Spekulationen darüber, wie diese neuartige Materie zu beschreiben ist. Diese gehen teilweise von der Vorstellung aus, dass unser Universum nicht drei sondern mehr Raumdimensionen besitzt, in denen sich diese "dunkle Materie" bisher vor uns "verstecken" konnte.

Offene Quantensysteme: Von den Grundlagen der Quantenmechanik zu den Technologien der Zukunft

Die Möglichkeit, Musik in Form von CDs zu hören, verdanken wir dem Laser. Der Laser tastet die Oberfläche der CD ab und ermöglicht somit die Wiedergabe von digital aufgenommener Musik in hoher Qualität. Ein Laserstrahl besteht aus einem kohärenten Bündel von Lichtteilchen, den so genannten Photonen, d.h. von synchron schwingenden Lichtteilchen. Im Gegensatz dazu sind die Schwingungen des Lichtes einer normalen Glühbirne völlig ungeordnet. Die Herstellung kohärenten Lichtes kann nur mit Methoden der Quantenmechanik verstanden werden; sie liegt außerhalb des Phänomenbereichs des Weltbildes der klassischen Physik.

Die Quantenmechanik gilt heute als die genaueste physikalische Theorie, die die gesamte mikroskopische, atomare und subatomare Welt beschreibt. Seit ihrer

Entwicklung durch Werner Heisenberg, Erwin Schrödinger und andere um das Jahr 1927 ist sie zu einer extrem erfolgreichen Theorie mit einer Fülle von Anwendungsgebieten ausgebaut worden. So bildet die Quantentheorie zum Beispiel die Grundlage für Erfindungen wie die des Lasers und des Halbleiters, von Technologien also, die unsere Zeit entscheidend geprägt haben. Einer Schätzung zufolge beruht etwa 30 Prozent des amerikanischen Bruttosozialprodukts auf der wirtschaftlichen Nutzung von Technologien, die auf der Quantenmechanik basieren.

In ihrer ursprünglichen Formulierung beschreibt die Quantenmechanik einzelne Objekte, wie zum Beispiel ein Wasserstoffatom. Die meisten interessanten Systeme sind aber keineswegs isoliert, vielmehr stehen sie in Wechselwirkung mit ihrer Umgebung. Der angesprochene Laser z.B. arbeitet nur, weil er aus einem Reservoir Energie in inkohärenter Form, d.h. wellenartiger Form aufnimmt, um diese in kohärenter, d.h. wellenartiger Form an seine Umgebung wieder abzugeben.

Aus diesem Grund beschäftigt man sich heute in der theoretischen Physik intensiv mit der Theorie offener Quantensysteme, in der sowohl Grundlagenprobleme als auch praktische Anwendungen eine Rolle spielen. Ein typisches Beispiel für den engen Zusammenhang zwischen Grundlagenforschung und anwendungsorientierter Forschung ist das so genannte Phänomen der Dekohärenz. Hierunter versteht man den Verlust des typisch quantenmechanischen, kohärenten Verhaltens beim Übergang von der mikroskopischen zur makroskopischen Welt. Das Verständnis und die gezielte Kontrolle dieses Phänomens sind unverzichtbar für künftige Entwicklungen, wie zum Beispiel die Quantenkryptographie, der Quantencomputer und der Atomlaser, die gerade auf der Erhaltung des Wellencharakters beruhen.

Kontakt:


PD Dr. Domenico Giulini
Prof. Dr. Francesco Petruccione
Fakultät für Physik

Hermann-Herder-Straße 3
79104 Freiburg
Tel: 0761/203-5828 oder -5819
Fax 0761/203-5967
Mail: giulini@physik.uni-freiburg.de 
petruccione@physik.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://webber.physik.uni-freiburg.de/~frpe/Sommerschule2002/index.html

Weitere Berichte zu: Laser Materie Physik Quantenmechanik Weltbild

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Digitales Know-how für den Mittelstand: Uni Bayreuth entwickelt neuartiges Weiterbildungsprogramm
28.09.2017 | Universität Bayreuth

nachricht Physik-Didaktiker aus Münster entwickeln Lehrmaterial zu Quantenphänomenen
22.09.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz