Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Solarkollektoren bis zur solaren Stadt

18.03.2010
Die Eindämmung des globalen Klimawandels zählt zu den derzeit größten Herausforderungen der Menschheit. Gebäude sind dabei für etwa 45 Prozent des Weltenergieverbrauchs und somit für einen Großteil des CO2-Ausstoßes verantwortlich.

Eine Klimakatastrophe kann abgewendet werden, wenn auch Gebäude so gebaut sind, dass sie weniger Energie verbrauchen, erneuerbare Energien nutzen und im besten Fall über ihren eigenen Bedarf hinaus Energie produzieren.

Dieser Paradigmenwechsel wird aber nur dann zeitnah eintreten, wenn der industrialisierten Welt attraktive Alternativen zur Verfügung gestellt werden. Zukunftsweisende Ansätze dazu stellte der Leiter des Lehrstuhls 2 am Instituts für Baukonstruktion und Entwerfen (IBK2) der Universität Stuttgart, Prof. Stefan Behling, im Rahmen der Reihe "Forschung hinter den Kulissen vor.

Angesichts der vielfältigen Herausforderungen sind Lösungen in allen Maßstäben gefragt. Dies beginnt bei Mikro-Technologien und reicht über Produkte und Komponenten wie Photovoltaikpaneele, Windturbinen oder Solarthermie-Kollektoren sowie komplexe Gebäudesysteme bis hin zum kompletten System Stadt. Mit zunehmendem Maßstab steigt dabei auch die Komplexität der Problemstellungen. Vereinfacht gesagt sind auf dem Weg zu einer nachhaltigen Lebensform zunächst die solaren, nachhaltigen Komponenten zu erforschen und zu entwickeln, dann solare, nachhaltige Gebäude und schließlich solare, nachhaltige Städte. Das IBK arbeitet seit über 15 Jahren systematisch auf allen drei Ebenen.

Eine Stadt oder einen Stadtteil als einen Organismus zu betrachten, ist nicht neu. Mit Blick auf die Nachhaltigkeit wird dabei ihr Metabolismus analysiert, also die Ein- und Ausfuhr von Material, Wasser, Luft und Energie. Die Entwicklung einer Stadt, deren Metabolismus CO2-neutral ist, ist sicher eines der anspruchsvollsten Ziele der Welt.

Die Universität Stuttgart arbeitet an solchen Projekten in Forschung und Lehre. Studierende entwickeln Visionen an Hand von Modellen und Zeichnungen und versuchen, realistische Konzepte für die Stadt von Morgen aufzuzeigen. Darüber hinaus beschäftigt sich das IBK 2 mit innovativen Gebäudekomponenten. Der integrative Ansatz ist dabei ein wesentlicher Faktor zur Steigerung der Leistungsfähigkeit - sei es bei der Entwicklung einer neuartigen Energiefassade, der architektonischen Integration von Solarthermie in Fassaden, der Integration der Windenergienutzung in Hochhäusern oder auch bei der Entwicklung einzelner Bauteilkomponenten. Für Energieeffizienz und Nachhaltigkeit ist zudem die Natur eine unerschöpfliche Quelle der Inspiration. Daher wird am Institut auch intensiv auf dem Gebiet der Bionik geforscht. Das Spektrum reicht von der menschlichen Haut, die nicht nur eine Hülle, sondern auch ein aktives Temperaturausgleichs- und Atmungsorgan ist, bis hin zu Bauten von Tieren wie Termitenhügeln, die eine hochkomplexe "Fassade" besitzen. "Unsere Vision sind Gebäude, die mehr Energie einsammeln, als sie verbrauchen und dafür verstärkt ihre Oberflächen aktivieren", erklärt Prof. Stefan Behling. Da solares Bauen nicht nur ein technisches, sondern vor allem auch ein architektonisches Thema ist, muss nachhaltige solare Architektur besseren Komfort schaffen und zugleich nachhaltig ästhetischen Ansprüchen genügen.

Exemplarische Einzelprojekte:

1. Energiefassade
Fassadenprofile, Füllelemente, Sonnenschutz, Kollektoren und ähnliche Einzelkomponenten werden bisher von verschiedenen Herstellern angeboten und müssen von Planern mit hohem Aufwand zu komplexen Hüllsystemen kombiniert werden. Das Projekt versucht, neue Wege aufzuzeigen und funktional notwendige Baukomponenten für eine energieoptimierte Fassade zu entwickeln, die in ein handelsübliches Fassadensystem integriert werden können. So können automatisch zu öffnende Fensterflügel unsichtbar in die Pfosten- Riegelfassade integriert werden und für natürliche Lüftung sorgen. Die verdeckt liegenden Systemantriebe sind in Pfosten mit einer Breite von circa 8,5 Zentimeter eingebaut. Sie können zentral, dezentral oder individuell am Fassadenelement betrieben werden. Für den außen liegenden Sonnenschutz entwickelten die Wissenschaftler am IBK2 eine Mikrolamelle, die die Fassade bei Windgeschwindigkeiten bis etwa 100 Stundenkilometern zuverlässig verschattet. Die Mikrolamellen werden seitlich in den Pfosten geführt und sind in eingefahrenem Zustand praktisch unsichtbar. Im Bereich der Energiegewinnung müssen Photovoltaik und thermische Kollektoren gleichwertig in die Fassade integriert werden. In Zukunft kann die Gebäudehülle neben Strom auch Wärme und mittels Kälteabsorption die oftmals wichtigere Kühlung selbst erzeugen. Hierzu wurde ein optisch durchlässiger Flachkollektor entwickelt, der ein Licht- und Schattenspiel erzeugt. Heizung und Kühlung sind vor der Geschosstrenndecke im Fassadenelement positioniert, was eine flexibel nutz- und gestaltbare Fassadenfläche ermöglicht.

Die Wissenschaftler am IBK2 vertreten die Auffassung, dass bei ganzheitlicher Betrachtung eines Gebäudes die Vorteile einer dezentralen Lösung für die HL (Heizungs- und Lüftungs)-Technik gegenüber einer zentralen Lösung überwiegen. Neben den konstruktiven Einsparungen an Geschosshöhen, Steigschächten, Technikräumen und -geschossen wird auch der Komfort durch die Individualisierung der Lüftung erhöht. Außerdem können, wie bei der Beleuchtung längst üblich, ganze Bereiche abgeschaltet werden. Fassaden werden sich in Zukunft vom rein thermischen Gebäudeabschluss zu multifunktionalen Gebäudehüllen entwickeln müssen, Bereiche der Haustechnik übernehmen und aktiv das Gebäudeklima kontrollieren. Umso wichtiger ist es, die Gebäudehülle als System zu begreifen und die vielfältigen Anforderungen und Funktionen ganzheitlich zu betrachten.

2. Architektonische Integration von Solarthermie in Fassaden
Im Gegensatz zur Photovoltaik hat sich in der Solarthermie der "Evolutionssprung" von einem technisch-funktionalen Element zu einem architektonisch zufriedenstellenden Bauteil noch nicht vollzogen. Für Flachkollektoren gibt es bereits Systeme, die eine Integration in die Gebäudehülle ermöglichen, für Vakuumröhren jedoch nicht. Sie bieten aufgrund ihrer ästhetischen Struktur große Potenziale für Fassaden. Ziel ist die Entwicklung eines flexibel anwendbaren integralen Fassadenbauteils, das Sonnenschutz, Energiegewinnung und Tageslichtnutzung leistet. Die Fassadenpfosten übernehmen dabei neben ihrer konstruktiven Funktion die Aufgabe des Sammlers. Die Vakuumglasröhre kann dank ihres integrierten Spiegels ohne große energetische Einbußen in eine vertikale Fassade eingebaut werden. Die Röhre wird so gedreht, dass der integrierte Spiegel optimal zur einfallenden Strahlung ausgerichtet ist. Die wesentlichen konstruktiven Parameter des Fassadensystems sind der Rasterabstand zwischen zwei Röhren, der den Tageslichteinfall beeinflusst und der Röhrenanstellwinkel. Der spezifische Energieertrag in Bezug auf die Brutto-Fassadenfläche nimmt mit zunehmendem Röhrenabstand ab. Das Fassadensystem mit Vakuumröhren erbringt in Bezug auf die Fläche, die das Sonnelicht aufnehmen kann (Aperturfläche), einen rund 35 Prozent höheren Energieertrag als eine effiziente Flachkollektor-Fassade.
3. Integration von Windturbinen in die gebaute Umwelt
In einem weiteren Projekt geht darum, wie Windenergieanlagen bei optimaler Nutzung der Standortfaktoren in ein bebautes Umfeld integriert werden können. Windturbinen in Gebäuden bringen Probleme mit sich, da weder die Turbine, noch das Gebäude dem Wind nachgeführt werden können. Im städtischen Umfeld sind die Windgeschwindigkeiten geringer und die Turbinen befinden sich in der Nähe von Menschen. Die Stuttgarter Wissenschaftler untersuchten verschiedene Gebäudeformen nach aerodynamischen Kriterien und testeten einen Zwillingsturm mit "Bumerang-Grundriss" als Modell. Wurden die Rotoren innerhalb der düsen-förmigen Gebäudekonfiguration platziert, erhöhte sich die Windgeschwindigkeit am Rotor um einen Meter pro Sekunde und erzeugte wesentlich mehr Kraft als freistehende Anlagen. Rechnet man die Ergebnisse hoch, hätte ein entsprechend größeres Gebäude eine mindestens 25 Prozent höhere Energieausbeute. Weitere Gewinne können erzielt werden, wenn es gelingt, die Rotoren in größerer Höhe stärkeren Windgeschwindigkeiten auszusetzen.
Weitere Informationen bei Peter Seger,
Tel. 0711/685-83249, e-mail peter.seger@ibk2.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/ibk2/

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Stadtplanung im Klimawandel: HafenCity Universität Hamburg entwickelt Empfehlungen
24.03.2017 | HafenCity Universität Hamburg

nachricht Innenraum-Ortung für dynamische Umgebungen
23.03.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise