Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Solarkollektoren bis zur solaren Stadt

18.03.2010
Die Eindämmung des globalen Klimawandels zählt zu den derzeit größten Herausforderungen der Menschheit. Gebäude sind dabei für etwa 45 Prozent des Weltenergieverbrauchs und somit für einen Großteil des CO2-Ausstoßes verantwortlich.

Eine Klimakatastrophe kann abgewendet werden, wenn auch Gebäude so gebaut sind, dass sie weniger Energie verbrauchen, erneuerbare Energien nutzen und im besten Fall über ihren eigenen Bedarf hinaus Energie produzieren.

Dieser Paradigmenwechsel wird aber nur dann zeitnah eintreten, wenn der industrialisierten Welt attraktive Alternativen zur Verfügung gestellt werden. Zukunftsweisende Ansätze dazu stellte der Leiter des Lehrstuhls 2 am Instituts für Baukonstruktion und Entwerfen (IBK2) der Universität Stuttgart, Prof. Stefan Behling, im Rahmen der Reihe "Forschung hinter den Kulissen vor.

Angesichts der vielfältigen Herausforderungen sind Lösungen in allen Maßstäben gefragt. Dies beginnt bei Mikro-Technologien und reicht über Produkte und Komponenten wie Photovoltaikpaneele, Windturbinen oder Solarthermie-Kollektoren sowie komplexe Gebäudesysteme bis hin zum kompletten System Stadt. Mit zunehmendem Maßstab steigt dabei auch die Komplexität der Problemstellungen. Vereinfacht gesagt sind auf dem Weg zu einer nachhaltigen Lebensform zunächst die solaren, nachhaltigen Komponenten zu erforschen und zu entwickeln, dann solare, nachhaltige Gebäude und schließlich solare, nachhaltige Städte. Das IBK arbeitet seit über 15 Jahren systematisch auf allen drei Ebenen.

Eine Stadt oder einen Stadtteil als einen Organismus zu betrachten, ist nicht neu. Mit Blick auf die Nachhaltigkeit wird dabei ihr Metabolismus analysiert, also die Ein- und Ausfuhr von Material, Wasser, Luft und Energie. Die Entwicklung einer Stadt, deren Metabolismus CO2-neutral ist, ist sicher eines der anspruchsvollsten Ziele der Welt.

Die Universität Stuttgart arbeitet an solchen Projekten in Forschung und Lehre. Studierende entwickeln Visionen an Hand von Modellen und Zeichnungen und versuchen, realistische Konzepte für die Stadt von Morgen aufzuzeigen. Darüber hinaus beschäftigt sich das IBK 2 mit innovativen Gebäudekomponenten. Der integrative Ansatz ist dabei ein wesentlicher Faktor zur Steigerung der Leistungsfähigkeit - sei es bei der Entwicklung einer neuartigen Energiefassade, der architektonischen Integration von Solarthermie in Fassaden, der Integration der Windenergienutzung in Hochhäusern oder auch bei der Entwicklung einzelner Bauteilkomponenten. Für Energieeffizienz und Nachhaltigkeit ist zudem die Natur eine unerschöpfliche Quelle der Inspiration. Daher wird am Institut auch intensiv auf dem Gebiet der Bionik geforscht. Das Spektrum reicht von der menschlichen Haut, die nicht nur eine Hülle, sondern auch ein aktives Temperaturausgleichs- und Atmungsorgan ist, bis hin zu Bauten von Tieren wie Termitenhügeln, die eine hochkomplexe "Fassade" besitzen. "Unsere Vision sind Gebäude, die mehr Energie einsammeln, als sie verbrauchen und dafür verstärkt ihre Oberflächen aktivieren", erklärt Prof. Stefan Behling. Da solares Bauen nicht nur ein technisches, sondern vor allem auch ein architektonisches Thema ist, muss nachhaltige solare Architektur besseren Komfort schaffen und zugleich nachhaltig ästhetischen Ansprüchen genügen.

Exemplarische Einzelprojekte:

1. Energiefassade
Fassadenprofile, Füllelemente, Sonnenschutz, Kollektoren und ähnliche Einzelkomponenten werden bisher von verschiedenen Herstellern angeboten und müssen von Planern mit hohem Aufwand zu komplexen Hüllsystemen kombiniert werden. Das Projekt versucht, neue Wege aufzuzeigen und funktional notwendige Baukomponenten für eine energieoptimierte Fassade zu entwickeln, die in ein handelsübliches Fassadensystem integriert werden können. So können automatisch zu öffnende Fensterflügel unsichtbar in die Pfosten- Riegelfassade integriert werden und für natürliche Lüftung sorgen. Die verdeckt liegenden Systemantriebe sind in Pfosten mit einer Breite von circa 8,5 Zentimeter eingebaut. Sie können zentral, dezentral oder individuell am Fassadenelement betrieben werden. Für den außen liegenden Sonnenschutz entwickelten die Wissenschaftler am IBK2 eine Mikrolamelle, die die Fassade bei Windgeschwindigkeiten bis etwa 100 Stundenkilometern zuverlässig verschattet. Die Mikrolamellen werden seitlich in den Pfosten geführt und sind in eingefahrenem Zustand praktisch unsichtbar. Im Bereich der Energiegewinnung müssen Photovoltaik und thermische Kollektoren gleichwertig in die Fassade integriert werden. In Zukunft kann die Gebäudehülle neben Strom auch Wärme und mittels Kälteabsorption die oftmals wichtigere Kühlung selbst erzeugen. Hierzu wurde ein optisch durchlässiger Flachkollektor entwickelt, der ein Licht- und Schattenspiel erzeugt. Heizung und Kühlung sind vor der Geschosstrenndecke im Fassadenelement positioniert, was eine flexibel nutz- und gestaltbare Fassadenfläche ermöglicht.

Die Wissenschaftler am IBK2 vertreten die Auffassung, dass bei ganzheitlicher Betrachtung eines Gebäudes die Vorteile einer dezentralen Lösung für die HL (Heizungs- und Lüftungs)-Technik gegenüber einer zentralen Lösung überwiegen. Neben den konstruktiven Einsparungen an Geschosshöhen, Steigschächten, Technikräumen und -geschossen wird auch der Komfort durch die Individualisierung der Lüftung erhöht. Außerdem können, wie bei der Beleuchtung längst üblich, ganze Bereiche abgeschaltet werden. Fassaden werden sich in Zukunft vom rein thermischen Gebäudeabschluss zu multifunktionalen Gebäudehüllen entwickeln müssen, Bereiche der Haustechnik übernehmen und aktiv das Gebäudeklima kontrollieren. Umso wichtiger ist es, die Gebäudehülle als System zu begreifen und die vielfältigen Anforderungen und Funktionen ganzheitlich zu betrachten.

2. Architektonische Integration von Solarthermie in Fassaden
Im Gegensatz zur Photovoltaik hat sich in der Solarthermie der "Evolutionssprung" von einem technisch-funktionalen Element zu einem architektonisch zufriedenstellenden Bauteil noch nicht vollzogen. Für Flachkollektoren gibt es bereits Systeme, die eine Integration in die Gebäudehülle ermöglichen, für Vakuumröhren jedoch nicht. Sie bieten aufgrund ihrer ästhetischen Struktur große Potenziale für Fassaden. Ziel ist die Entwicklung eines flexibel anwendbaren integralen Fassadenbauteils, das Sonnenschutz, Energiegewinnung und Tageslichtnutzung leistet. Die Fassadenpfosten übernehmen dabei neben ihrer konstruktiven Funktion die Aufgabe des Sammlers. Die Vakuumglasröhre kann dank ihres integrierten Spiegels ohne große energetische Einbußen in eine vertikale Fassade eingebaut werden. Die Röhre wird so gedreht, dass der integrierte Spiegel optimal zur einfallenden Strahlung ausgerichtet ist. Die wesentlichen konstruktiven Parameter des Fassadensystems sind der Rasterabstand zwischen zwei Röhren, der den Tageslichteinfall beeinflusst und der Röhrenanstellwinkel. Der spezifische Energieertrag in Bezug auf die Brutto-Fassadenfläche nimmt mit zunehmendem Röhrenabstand ab. Das Fassadensystem mit Vakuumröhren erbringt in Bezug auf die Fläche, die das Sonnelicht aufnehmen kann (Aperturfläche), einen rund 35 Prozent höheren Energieertrag als eine effiziente Flachkollektor-Fassade.
3. Integration von Windturbinen in die gebaute Umwelt
In einem weiteren Projekt geht darum, wie Windenergieanlagen bei optimaler Nutzung der Standortfaktoren in ein bebautes Umfeld integriert werden können. Windturbinen in Gebäuden bringen Probleme mit sich, da weder die Turbine, noch das Gebäude dem Wind nachgeführt werden können. Im städtischen Umfeld sind die Windgeschwindigkeiten geringer und die Turbinen befinden sich in der Nähe von Menschen. Die Stuttgarter Wissenschaftler untersuchten verschiedene Gebäudeformen nach aerodynamischen Kriterien und testeten einen Zwillingsturm mit "Bumerang-Grundriss" als Modell. Wurden die Rotoren innerhalb der düsen-förmigen Gebäudekonfiguration platziert, erhöhte sich die Windgeschwindigkeit am Rotor um einen Meter pro Sekunde und erzeugte wesentlich mehr Kraft als freistehende Anlagen. Rechnet man die Ergebnisse hoch, hätte ein entsprechend größeres Gebäude eine mindestens 25 Prozent höhere Energieausbeute. Weitere Gewinne können erzielt werden, wenn es gelingt, die Rotoren in größerer Höhe stärkeren Windgeschwindigkeiten auszusetzen.
Weitere Informationen bei Peter Seger,
Tel. 0711/685-83249, e-mail peter.seger@ibk2.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/ibk2/

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht BAUFRITZ-Musterhaus - Tradition im hier und jetzt: Heimat 4.0
07.05.2018 | Bau-Fritz GmbH & Co. KG, seit 1896

nachricht Gute Raumakustik in Arbeitsumgebungen: Konzentrierter arbeiten im Büro
02.05.2018 | Fraunhofer-Institut für Bauphysik IBP

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics