Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weizen gegen Mosaikvirus wappnen - neuer Genmarker hilft

10.09.2008
Wissenschaftler des Julius Kühn-Instituts (JKI) stellen auf Symposium markergestützte Diagnosemethode vor, mit dem sich Virusresistenzen beim Weizen voraussagen lassen

Das Soil-borne Cereal Mosaic Virus, SBCMV abgekürzt, führt bereits heute in Frankreich zu erheblichen Ertragsverlusten im Weizenanbau. Da es auch in Deutschland in jüngster Zeit vereinzelt nachgewiesen wurde, ist es eine Frage der Zeit, dass es auch hier Schaden anrichtet.

Das Virus kommt im Boden vor und wird durch den Pilz Polymyxa graminis auf die Pflanzen übertragen. Da das Virus in den Dauersporen des Pilzes quasi geschützt wird, sind chemische Maßnahmen sowohl aus ökonomischer als auch aus ökologischer Sicht nicht sinnvoll. Umso wichtiger ist es, den Landwirten rechtzeitig virusresistente Weizensorten zur Verfügung zu stellen.

Wissenschaftler des Julius Kühn-Instituts (JKI) in Quedlinburg sind dabei einen entscheidenden Schritt vorangekommen. Im Rahmen eines EU geförderten Projektes ist es ihnen gemeinsam mit der INRA Versailles sowie französischen, britischen und deutschen Züchterhäusern gelungen, einen molekularen Marker zu entwickeln, mit dem sich das Virusresistenzgen sicher erfassen lässt.

Genanalysen von zwei europäischen Sorten (Tremie und Claire) hatten ergeben, dass die Resistenz gegen das SBCM-Virus von einem Gen gesteuert wird, das sich in einem bestimmten Abschnitt auf dem Chromosom 5 des Weizens (5DL) befindet. Zuvor war von einer britischen Arbeitsgruppe bei der nichtverwandten Weizen-Sorte Cadenza im selben Abschnitt ein Resistenzgen gegen SBCMV gefunden worden. "Unsere Herausforderung bestand nun darin, einen Test zu entwickeln, mit dem sich auf einen Blick sagen lässt, ob eine Virusresistenz vorliegt", erklärt Dr. Frank Ordon vom Julius Kühn-Institut.

Spezialität seiner Quedlinburger Arbeitsgruppe ist die Entwicklung molekularer Marker. Im Falle des SBCMV fand sein Mitarbeiter Dr. Dragan Perovic einen Mikrosatelliten (SSR) auf dem entsprechenden Chromosomabschnitt, welcher aufgrund seiner engen Kopplung und seines hohen diagnostischen Charakters eine effektive Selektion resistenter Weizen-Genotypen in frühen Entwicklungsstadien der Pflanzen ermöglicht (siehe dazu Hintergrundinformationen). "Mit Hilfe dieses Markers kann nun die Resistenz in Hochleistungssorten eingelagert werden, die an deutsche Klima- und Bodenverhältnisse angepasst sind, und das noch bevor die Krankheit auf deutschen Feldern großräumig ausbricht", verdeutlicht Dr. Ordon die Bedeutung dieser Arbeiten.

Die Ergebnisse sind vergangene Woche in Quedlinburg auf einer Tagung der "Internationalen Arbeitsgruppe zu Pflanzenviren mit pilzlichen Vektoren" vorgestellt worden.

Tiefergehende Information für die Fachpresse:
Mikrosatelliten, auch SSR genannt, sind kurze, nicht kodierende DNA-Sequenzen, die im Genom eines Organismus (im beschriebenen Fall in der Weizen-DNA) oft wiederholt werden. Die wiederholte Sequenz ist sehr einfach. Sie besteht aus zwei bis vier Nukleotiden und kann 10- bis 100-mal auftreten. Oftmals konzentrieren sich viele Wiederholungen am selben Auffindeort. In unserem Beispiel finden sich die SSR auf einem Abschnitt des 5. Chromosoms, auf dem auch ein bekanntes Resistenzgen lokalisiert ist.

Da sich die Anzahl der Wiederholungen bei verschiedenen Weizensorten unterscheidet, entstehen beim molekularen Schneiden mit Restriktionsenzymen DNA-Fragmente unterschiedlicher Länge. Fehlt wie in unserem Beispiel die SSR komplett, findet sich gar kein Fragment. Untersuchungen der Gensequenz ergaben, dass sich der gefundene Mikrosatellit als Marker für Virus-Resistenzgene eignet.

Mit genetischen Markern lassen sich also Polymorphismen in der DNA feststellen. Als Polymorphismus bezeichnet man das Auftreten einer Genvariante in einer Population, etwa verschiedenen Getreide-Sorten. Definitionsgemäß muss die Auftretenshäufigkeit der Genvariante größer als ein Prozent sein, andernfalls wird von einer Mutation gesprochen.

Ihre Ansprechpartner vor Ort:
PD Dr. Frank Ordon, Dr. Dragan Perovic
Institut für Resistenzforschung und Stresstoleranz am
Julius Kühn-Institut - Bundesforschungsinstitut für Kulturpflanzen
Erwin-Baur-Str. 27, 06484 Quedlinburg
Tel.: 03946 / 47-602 bzw 611
E-Mail: frank.ordon(at)jki.bund.de oder dragan.perovic(at)jki.bund.de

Stefanie Hahn | idw
Weitere Informationen:
http://www.jki.bund.de
http://www.iwgpvfv2008.bafz.de/

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Getreide, das der Dürre trotzt
19.09.2017 | Universität Wien

nachricht BMEL verstärkt Maßnahmen im Kampf gegen das Eschentriebsterben
11.09.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops