Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gentechnik im Mais – Bt-Toxin dient Mikroorganismen als Nahrung

05.06.2015

Publikation des Thünen-Instituts klärt das Schicksal des Bt-Toxins Cry1Ab in Böden auf

Das Bt-Toxin Cry1Ab ist ein Protein (Eiweiß), das in der Natur von Bakterien der Gattung Bacillus gebildet werden kann. Es wirkt gegen bestimmte Insektenlarven und verleiht, wenn es gentechnisch übertragen wird, Pflanzen wie Mais die Fähigkeit, sich gegen Schadinsekten wie den Maiszünsler zu schützen.


Boden eines Maisfeldes

(Foto: Thünen-Institut)

Dieser sog. BT-Mais gehört heute zu den weltweit am häufigsten angebauten gentechnisch veränderten Pflanzen überhaupt. Auch in der EU ist ihr Anbau prinzipiell zugelassen, die einzelnen Mitgliedstaaten können allerdings in Eigenregie über ein mögliches Anbauverbot entscheiden. Das Thünen-Institut erarbeitet in diesem Zusammenhang für die politischen Entscheidungsträger wissenschaftliche Grundlagen.

Frühere Untersuchungen des Thünen-Instituts durch das Forscherteam um Prof. Dr. Christoph Tebbe haben gezeigt, dass das Cry1Ab beim Anbau von BT-Mais in den Boden gelangt. Dies geschieht in geringem Maße während des Maisanbaus über die Wurzeln, vor allem aber nach der Ernte durch die auf dem Feld verbliebenen Pflanzenreste (1).

Für eine Umweltrisiko-Analyse ist es wichtig zu verstehen, was dann im Boden mit dem Protein geschieht. Bisherige Untersuchungen belegten bereits, dass Cry1Ab im Boden kaum nachweisbar war. Dabei blieb allerdings unklar, ob es nur im Boden gebunden oder auch tatsächlich abgebaut wurde.

Die Thünen-Forscher nutzten für ihre aktuellen Arbeiten ein Isotopen-markiertes Cry1Ab-Protein, das es ihnen erlaubte, die Kohlenstoffatome des Cry1Ab und ihre Abbauprodukte eindeutig nachzuweisen. Dabei zeigte sich, dass Cry1Ab zunächst an Bodenbestandteile, vor allem an Tonpartikel bindet, und von dort aus langsam in die wässrige Bodenphase abgegeben wird.

Sobald die Proteine im Bodenwasser auftauchen, werden sie von den dort lebenden Bodenmikroorganismen mit sehr hoher Effizienz abgebaut: Die Mikroorganismen nutzen das Protein als Nahrungsquelle, genau so, wie sie es mit den vielen anderen natürlichen Proteinen tun, die von Pflanzen in den Boden abgebeben werden.

Die Bindung des Cry1Ab an die Bodenbestandteile verlangsamt den Abbau, doch der Hunger der Bodenmikroorganismen sorgt dafür, dass die wassergelöst verfügbare Cry1Ab-Konzentration extrem niedrig bleibt. Damit ist eine Weiterverbreitung des Cry1Ab durch Regenwasser bis in unser Trinkwasser extrem unwahrscheinlich. Die neuen wissenschaftlichen Ergebnisse wurden jetzt in einer internationalen Zeitschrift veröffentlicht (2).

(1) Baumgarte S, Tebbe CC (2005) Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Molecular Ecology 14, 2539-2551

(2) Valldor P, Miethling-Graff R, Martens R, Tebbe CC (2015) Fate of insecticidal Cry1Ab protein of GM crops in two agricultural soils as revealed by 14C-tracer studies. Applied Microbiology and Biotechnology, online; DOI 10.1007/s00253-015-6655-5

Dr. Michael Welling | Thünen-Institut
Weitere Informationen:
http://www.ti.bund.de

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Feuerbrand bekämpfen und Salmonellen nachweisen
14.06.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Das Potenzial nichtheimischer Baumarten für den forstlichen Anbau in Deutschland sachlich prüfen
14.06.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften