Virenfilter für die medizinische Diagnostik

Der zuverlässige Nachweis von Viren im menschlichen Blut erfordert gegenwärtig zeit- und arbeitsaufwendige molekularbiologische Verfahren. Insbesondere wenn die Virenlast sehr gering ist, z. B. während einer Therapiephase, stoßen die etablierten Methoden an die Grenze der Nachweisfähigkeit.

Das könnte sich bald ändern. Bei der Entwicklung von neuartigen Mikropumpen ohne bewegliche Teile stießen Wissenschaftler des Fraunhofer-Instituts für Biomedizinische Technik IBMT auf ein unerwartetes Phänomen: In den mikroskaligen Pumpkanälen bildeten sich stabile Wirbelstrukturen. Dort reicherten sich die eigentlich zum Nachweis des Pumpeffekts vorgesehenen Nano- und Mikropartikel stark an.

Die Wirbelmuster füllten den ganzen Mikrokanal aus und bildeten für die Teilchen, die dem erzeugten Fließprofil folgten, eine nahezu 100prozentige Falle, obwohl ein sehr großer Querschnitt zum Durchströmen vorhanden ist . »Die Entstehung von Strömungswirbeln ist auf der makroskopischen Skala nichts ungewöhnliches, in Mikrokanälen verlaufen die Flusslinien jedoch annähernd parallel.« erklärt Richard Stein vom IBMT »Die Frage war daher, wie ist es möglich, dass sich dennoch so stabile und für das Aufkonzentrieren von Nanoteilchen effektive Wirbel herausbilden können?«

Experimentell gelang es nicht, die Parameter zu bestimmen, mit denen sich die Strömungswirbel und somit der Filtereffekt systematisch steuern lassen. Denn im untersuchten Pumpmechanismus – hochfrequente elektrische Wanderwellen treiben die Flüssigkeit in den Mikrokanälen an – überlagern sich sehr viele Effekte.

»Um die komplexen Vorgänge zu verstehen, wurde der Ruf nach einer theoretischen Beschreibung laut. Meine Aufgabe war es, die überraschenden Phänome zu beschreiben und kontrollierbar zu machen«, erinnert sich Richard Stein. In seiner Diplomarbeit »Mathematische Modellierung, Analysis und numerische Simulation elektrothermisch angetriebener Mikropumpen« gelang es ihm die Entstehung der Wirbelmuster zu erklären.

Dazu war die Einbeziehung aller maßgeblichen Prozesse, elektrischer, thermischer und hydrodynamischer Natur, in einem dreidimensionalen Modell erforderlich. Für diese Arbeit erhält Herr Stein den 1. Hugo-Geiger-Preis. Die darin gewonnenen Erkenntnisse erklären die beobachteten Effekte vollständig , so dass nun sowohl effektive Mikropumpen als auch leistungsfähige Partikelfilter für viele biomedizinische Anwendungen entwickelt und gebaut werden können.

Media Contact

Dr. Stephanie Schwarz Fraunhofer Gesellschaft

Weitere Informationen:

http://www.ibmt.fraunhofer.com

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Atomkern mit Laserlicht angeregt

Dieser lange erhoffte Durchbruch ermöglicht neuartige Atomuhren und öffnet die Tür zur Beantwortung fundamentaler Fragen der Physik. Forschenden ist ein herausragender Quantensprung gelungen – sprichwörtlich und ganz real: Nach jahrzehntelanger…

Wie das Immunsystem von harmlosen Partikeln lernt

Unsere Lunge ist täglich den unterschiedlichsten Partikeln ausgesetzt – ungefährlichen genauso wie krankmachenden. Mit jedem Erreger passt das Immunsystem seine Antwort an. Selbst harmlose Partikel tragen dazu bei, die Immunantwort…

Forschende nutzen ChatGPT für Choreographien mit Flugrobotern

Robotik und ChatGPT miteinander verbinden… Prof. Angela Schoellig von der Technischen Universität München (TUM) hat gezeigt, dass Large Language Models in der Robotik sicher eingesetzt werden können. ChatGPT entwickelt Choreographien…

Partner & Förderer