Über zwei Millionen Euro für Erforschung exotischer Atomkerne am CERN

Beteiligt sind Arbeitsgruppen der Technischen Universität Darmstadt, der Technischen Universität Dresden, der Ernst-Moritz-Arndt-Universität Greifswald, der Friedrich-Schiller-Universität Jena, der Universität zu Köln, der Johannes-Gutenberg-Universität Mainz und der Technischen Universität München. Das BMBF stellt die Mittel im Rahmen der Verbundforschung-Förderung für drei Jahre bereit.

Die Forschungsteams führen Untersuchungen an seltenen Atomkernen durch, die oft schon Sekundenbruchteile nach ihrer Produktion bereits wieder zerfallen. Ihre Erzeugung am CERN ist eine Herausforderung und führt oftmals zu lediglich sehr geringen Teilchenzahlen.

Für ihre Messungen entwickeln die Arbeitsgruppen daher hochempfindliche Detektoren, um die kurzlebigen Atomkerne nicht nur nachzuweisen, sondern auch ihre Eigenschaften wie zum Beispiel Größe, Masse und Anregungsspektrum mit hoher Genauigkeit zu vermessen. Dabei kommen atomphysikalische Methoden wie die Laserspektroskopie und die Massenspektrometrie ebenso zur Anwendung wie die hochaufgelöste Kernspektroskopie nach Kernstößen und -zerfällen. Ziel ist ein umfassendes Verständnis der Struktur dieser Kerne.

Aus den Ergebnissen dieser Experimente erhoffen sich die Wissenschaftler unter anderem neue Erkenntnisse über die kernphysikalischen Vorgänge in Sternen, der natürlichen Umgebung dieser radioaktiven Kerne. Insbesondere sind deren Eigenschaften wesentlich für das Verständnis der Prozesse unter den extremen Bedingungen, wie sie in Sternen herrschen, die größer und schwerer als unsere Sonne sind.

Dort sind außer den ganz leichten Kernen wie Wasserstoff und Helium, die schon nach dem Urknall vorhanden waren, praktisch alle anderen Kerne und damit die entsprechenden chemischen Elemente entstanden, aus denen unsere Umwelt und auch wir Menschen selbst aufgebaut sind. Über die kern- und astrophysikalische Grundlagenforschung hinaus finden die von ISOLDE zur Verfügung gestellten radioaktiven Kerne auch Anwendung bei der Untersuchung von Festkörpereigenschaften und medizinischen Fragestellungen, die von den Entwicklungen der experimentellen Methoden ebenfalls profitieren.

Gefördert werden Projekte der Arbeitsgruppen von Prof. Dr. Th. Kröll, Prof. Dr. W. Nörtershäuser, Prof. Dr. Dr. h.c. N. Pietralla (jeweils Darmstadt), Prof. Dr. K. Zuber (Dresden), Prof. Dr. L. Schweikhard (Greifswald), Prof. Dr. S. Fritzsche (Jena), Prof. Dr. P. Reiter/Prof. Dr. J. Jolie (Köln), Prof. Dr. K. Wendt (Mainz) und Dr. D. Mücher (München).

Weitere Informationen
BMBF http://www.bmbf.de/ → BMBF Hadronen- und Kernphysik http://www.bmbf.de/de/468.php
CERN http://home.web.cern.ch/ → ISOLDE http://isoltrap.web.cern.ch/

Ansprechpartner an der Universität Greifswald:
Vertreter der deutschen Arbeitsgruppen
im ISOLDE Collaboration Committee (ISCC) des CERN
Prof. Dr. Lutz Schweikhard
Institut für Physik
Felix-Hausdorff-Straße 6, 17489 Greifswald
Telefon 03834 86-4700
lschweik@physik.uni-greifswald.de
http://www6.physik.uni-greifswald.de/index.html

Media Contact

Jan Meßerschmidt idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Für kostengünstigere, nachhaltigere Akkus

Ultraniedrig konzentrierter Elektrolyt für Lithium-Ionen-Batterien Lithium-Salze machen Akkumulatoren leistungsfähig, aber teuer. Ein ultraniedrig konzentrierter Elektrolyt auf Basis des Lithium-Salzes LiDFOB könnte eine kostengünstige und dabei nachhaltigere Alternative sein. Zellen mit…

Partner & Förderer