Zürcher Forscher entdecken Schlüssel-Neuronen fürs Singen lernen

Singvögel besitzen – analog zum Spracherwerb beim Menschen – eine sensible Phase für das Er-lernen ihres Gesangs. Junge Zebrafinken lernen ihren Gesang, indem sie die Gesangsvorlage ihres Tutors, meist ihres Vaters, imitieren.

In dieser Lernphase ist es zwingend, dass der Jungvogel seinen eigenen Gesang hören, überwachen und laufend mit der Gesangsvorlage vergleichen kann. Seinen Gesang passt er über das so genannt auditorische Feedback an die akustische Vorlage an. Gleichzeitig muss der Jungvogel während des Singens in der Lage sein, Hintergrundsgeräusche zu erkennen.

Prof. Richard Hahnloser und Georg Keller vom Institut für Neuroinformatik haben jetzt als erste die lange gesuchten Nervenzellen für dieses auditorische Feedback bei Singvögeln nachweisen können. Die Nervenzellen befinden sich im auditorischen Kortex, der Hörrinde, und nicht wie bisher angenommen in den gesangsspezifischen Hirnarealen, die den Gesang steuern.

Hahnloser und Keller machten während ihrer Forschungsarbeit noch eine zweite, bahnbrechende Entdeckung: Sie fanden im auditorischen Kortex eines Jungvogels, der dabei ist seinen Gesang zu lernen, Nervenzellen, die dem Gesang effektiv „zuhören“, d.h. den Gesang aktiv verfolgen. Daneben entdeckten die Forscher zwei weitere Typen von Nervenzellen. „Der eine Typ Neuronen tut lediglich so, als ob er zuhören würde“, erklärt Richard Hahnloser das Phänomen. „Der andere Typ dagegen scheint nur auf externe Störungen zu warten.“ Entdeckt haben dies die beiden Forscher, in dem sie dem Jungvogel ein spezifisches Störgeräusch vorspielten. „Das Störgeräusch führt dazu, dass das, was der Vogel tatsächlich hört, von dem abweicht, was er zu hören erwartet“, erläutert Hahnloser die Versuchsanordnung. Die beiden Neuronentypen reagieren unterschiedlich auf das Störgeräusch: Der Neuronentyp, der nur „zuzuhören“ scheint, zeigt während des Singens stereotype Aktivitätsmuster und lässt sich von Störgeräuschen nicht beeinflussen. Der zweite Neuronentyp dagegen zeigt wenig Aktivität und reagiert fast ausschliesslich auf die vorgespielten Störgeräusche.

Die Signale der beiden neu entdeckten Neuronentypen könnten zentral für das Erlernen der Vokalisierung sein. Dazu Hahnloser: „Den Unterschied zwischen erwartetem und tatsächlich Gehörtem zu erkennen, bildet die grundlegende Voraussetzung, um singen oder sprechen zu lernen.“

Publikation:
Georg B. Keller & Richard H.R. Hahnloser, Neural processing of auditory feedback during vocal practice in a songbird, Nature, doi: 10.1038/nature07467

Kontakt:

Prof. Dr. Richard Hahnloser, Institut für Neuroinformatik der Universität Zürich und der ETH Zürich,
Tel. +41 44 635 30 60
E-Mail: richini.phys.ethz.ch

Media Contact

Beat Müller idw

Weitere Informationen:

http://www.ethz.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer