Zeta-Potenzial 2.0

Schematische Darstellung eines Fluidstroms an einer hydrophoben Oberfläche. An der Oberfläche angelagerte Ionen können den Fluidstrom in Wandnähe zusätzlich beschleunigen oder auch abbremsen. Bild: Olga Vinogradova

Wer eine herkömmliche Pumpe benutzt, um eine Flüssigkeit oder ein Gas durch eine extrem dünne Kapillare hindurch zu bewegen, stößt schnell an seine Grenzen: Je dünner die Kapillare, desto höher der benötigte Druck.

Der Energieaufwand für feinste Kapillaren wäre immens. Stattdessen machen sich Experten einen Kniff zu Nutze: Ersetzt man die Pumpe durch ein parallel zur Kapillare angelegtes elektrisches Feld, ist es möglich, mit geringem Aufwand einen sogenannten elektroosmotischen Fluss zu erzeugen.

Er beruht auf einer Doppelschicht aus Ionen, die sich an der Innenwand der Kapillare ausbildet. Die in der Kapillare enthaltene Flüssigkeit bzw. das enthaltene Gas ist dann nicht mehr elektrisch neutral und kann durch ein elektrisches Feld bewegt werden.

Im Jahr 1909 gelang es dem polnischen Physiker Marian Smoluchowski, die Strömungsgeschwindigkeit in einem solchen Aufbau zu beschreiben. Jetzt, gut 100 Jahre später, wird deutlich, dass die Smoluchowski-Gleichung nur für ganz spezielle Bedingungen eine exakte Vorhersage treffen kann: Für hydrophile Kapillarwände, bei denen der Kontaktwinkel gegenüber Wasser kleiner als 90 Grad ist.

Ganz andere Bedingungen herrschen an wasserabweisenden (hydrophoben) Oberflächen, an die sich aber ebenfalls Ionen anlagern können. Olga Vinogradova erklärt: „Um auch hier genaue Berechnungen zu ermöglichen, haben wir die Gleichung angepasst. Zwei Phänomene spielten dabei eine Rolle: Das war einerseits eine Gleitbewegung (‚Slippage‘), welche die Geschwindigkeit der Fluidströme deutlich erhöht.

Andererseits wollten wir das Verhalten von an die Kapillarwand angelagerten Ionen berücksichtigen. Versetzt das elektrische Feld auch diese Ionen in Bewegung, können sie den Fluidstrom in Wandnähe zusätzlich beschleunigen oder auch abbremsen. Unsere theoretischen Überlegungen haben wir anschließend durch Simulationsexperimente belegen können.“

Hauptakteur in der Smoluchowski-Gleichung ist das sogenannte Zeta-Potenzial. Dieser Parameter spiegelt die elektrokinetische Mobilität eines Partikels wieder. Je höher das Zeta-Potenzial, desto schneller bewegt sich ein Partikel oder ein Fluid in einem elektrischen Feld.

Für hydrophobe Oberflächen schlägt Olga Vinogradova in ihrer Publikation eine angepasste Interpretation des Zeta-Potenzials vor, die neben der Beweglichkeit von Oberflächenladungen auch den erwähnten Gleiteffekt einbezieht.

Das Zeta-Potenzial spielt in vielen technologischen und wissenschaftlichen Bereichen eine Rolle, beispielsweise in der Medizin, der Abwasserbehandlung und der Bodenreinigung. Darüber hinaus ist es wichtig für mikro- und nanofluidische Anwendungen. Ein Beispiel ist die Minidiagnostik in Form von Chip-Laboren, wie sie heutzutage bereits für den Nachweis und die Trennung von Biomolekülen genutzt werden.

Olga I. Vinogradova ist Professorin an der M.V. Lomonosov Moscow State University und am A.N. Frumkin Institute für Physikalische Chemie und Elektrochemie der Russischen Akademie der Wissenschaften. Mit ihren Kenntnissen besonders im Bereich der theoretischen Physik und Simulationsmethoden verstärkt sie das DWI-Team seit 2007 mit einer Gastprofessur. Ein Teil der beschriebenen Arbeiten wurde im Rahmen des Sonderforschungsbereichs 985 ‚Functional Microgels and Microgel Systems’ durchgeführt.

Publikation:
S. R. Maduar, A. V. Belyaev, V. Lobaskin, and O. I. Vinogradova
Phys. Rev. Lett. 114, 118301 – Published 19 March 2015
http://dx.doi.org/10.1103/PhysRevLett.114.118301

Media Contact

Dr. Janine Hillmer idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer