Quantenflüssigkeit wird beim Erwärmen fest

Wird eine Quantenflüssigkeit erwärmt, können kristalline Strukturen entstehen.
(c) Aarhus University

Feststoffe lassen sich durch Erwärmen schmelzen, doch in der Quantenwelt kann es auch umgekehrt sein:

Ein Innsbrucker Team von Experimentalphysikern um Francesca Ferlaino zeigt gemeinsam mit Physikern um den Theoretiker Thomas Pohl in der Fachzeitschrift Nature Communications, wie eine Quantenflüssigkeit durch Erwärmen suprafeste Strukturen ausbildet. Die Wissenschaftler:innen fanden ein erstes Phasendiagramm für einen Suprafestkörper bei Temperaturen über dem absoluten Nullpunkt.

Suprafestkörper sind ein relativ neues und aufregendes Forschungsgebiet. Sie zeigen gleichzeitig sowohl feste als auch supraflüssige Eigenschaften. 2019 konnten drei Forschungsgruppen diesen Zustand erstmals zweifelsfrei in ultrakalten Quantengasen nachweisen, unter ihnen die Forschungsgruppe um Francesca Ferlaino vom Institut für Experimentalphysik der Universität Innsbruck und dem ÖAW-Institut für Quantenoptik und Quanteninformation (IQOQI) in Innsbruck.

Im Jahr 2021 untersuchte das Team um Francesca Ferlaino detailliert den Lebenszyklus von suprafesten Zuständen in einem dipolaren Gas von Dysprosium-Atomen. Sie machten eine unerwartete Beobachtung: „Unsere Daten legten nahe, dass ein Temperaturanstieg die Entstehung von suprafesten Strukturen fördert“, erzählt Claudia Politi aus dem Team von Francesca Ferlaino. „Dieses überraschende Verhalten war ein wichtiger Anstoß für die Theorie, die den thermischen Fluktuationen in diesem Zusammenhang bisher kaum Augenmerk schenkte.“

Die Innsbrucker Wissenschaftler haben nun mit der dänischen Theoriegruppe um Thomas Pohl zusammengearbeitet, um den Effekt der thermischen Fluktuationen zu untersuchen. Sie entwickelten und veröffentlichten in der Fachzeitschrift Nature Communications ein theoretisches Modell, dass die experimentellen Ergebnisse erklären kann und die These unterstreicht, dass ein Erwärmen der Quantenflüssigkeit zur Ausbildung eines Quantenkristalls führen kann. Die theoretische Beschreibung zeigt, dass sich diese Strukturen mit steigender Temperatur leichter bilden können.

„Mit der neuen Beschreibung verfügen wir erstmals über ein Phasendiagramm, das die Entstehung suprafester Zustände in Abhängigkeit von der Temperatur zeigt“, freut sich Francesca Ferlaino. „Das überraschende, unserer Alltagswahrnehmung widersprechende Verhalten ergibt sich aus der anisotropen Natur der Dipol-Dipol-Wechselwirkung der stark magnetischen Dysprosiumatome.“

Die Forschungen sind ein wichtiger Schritt zu einem besseren Verständnis des suprafesten Materiezustands und wurden unter anderem vom Österreichischen Wissenschaftsfonds FWF, dem Europäischen Forschungsrat ERC und der Europäischen Union finanziert.

Wissenschaftliche Ansprechpartner:

Univ.-Prof. Dr. Francesca Ferlaino
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507 52440
E-Mail: francesca.ferlaino@uibk.ac.at
Web: http://www.erbium.at

Originalpublikation:

Heating a quantum dipolar fluid into a solid. J. Sanchez-Baena, Claudia Politi, F. Maucher, Francesca Ferlaino, and T. Pohl. Nature Communications 14, 1868 (2023) (Open Access) DOI: https://doi.org/10.1038/s41467-023-37207-3

http://www.uibk.ac.at

Media Contact

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer