Wenn Kerne aufeinander prallen

Abweichend von theoretischen Vorhersagen bildeten sich zudem um eine Größenordnung mehr der seltenen Xi-Teilchen. Die entsprechenden Ergebnisse wurden kürzlich in der Fachzeitschrift „Physical Review Letters“ vorgestellt.

Das Teilchen Xi ist seltsam, selten und schwer. Es existiert überhaupt nur für einen sehr kurzen Augenblick und auch nur, wenn man schwere Atomkerne zur Kollision bringt. Bei rund 700 Millionen Kollisionen an einem großen Teilchenbeschleuniger am GSI-Helmholtzzentrum für Schwerionenforschung in Darmstadt bildeten sich insgesamt nur 140 Xi-Teilchen, und doch ist dies um eine ganze Größenordnung mehr als erwartet.

Nachgewiesen wurden die seltenen Teilchen mit dem einmaligen Detektorsystem HADES, das im Rahmen einer internationalen Kooperation unter Beteiligung des Forschungszentrums Dresden-Rossendorf (FZD) an der GSI entstand.

Materie ist aus Atomkernen aufgebaut, die wiederum aus Protonen und Neutronen bestehen. Die kleinsten Bausteine, aus denen Protonen und Neutronen zusammengesetzt sind, heißen Quarks. Up- und Down-Quarks bilden den Großteil der uns bekannten Welt. Doch daneben existieren noch viele weitere Teilchen und Bausteine, nach denen Physiker an den großen Beschleunigern wie dem Schwerionensynchrotron SIS an der GSI in Darmstadt oder dem LHC am Europäischen Forschungszentrum CERN fahnden.

Besteht ein Teilchen auch aus den so genannten Strange-Quarks, so sprechen die Kernphysiker von einem seltsamen Teilchen. Das Xi-Teilchen ist gleich doppelt seltsam, enthält es doch zwei Strange-Quarks. Für die mit dem HADES-Detektor aufgespürten Xi-Teilchen fanden die Rossendorfer Physiker nun heraus, dass ihre Entstehung stark von den theoretischen Vorhersagen abweicht. So bilden sie sich schon bei vergleichsweise geringen Energien, bei denen mehrere Kernbausteine ihre Bewegungsenergie kooperativ zusammenlegen müssen, um solcherart massive und neue Teilchen erzeugen zu können. Dabei entstehen aufgrund noch ungeklärter Mechanismen mehr von den seltenen Xi-Teilchen als mit vorhandenen theoretischen Modellen berechnet werden. Gerade bei Stößen von schweren Ionen bei geringen Energien, so die Forscher, stimmen somit die theoretischen Vorhersagen über die Xi-Erzeugung nicht mit den Resultaten der Experimente überein. Überraschenderweise unterschätzen hier die verfügbaren Modelle die Stärke der Xi-Produktion gleich um eine Größenordnung. Deshalb sollte die Theorie zur Produktion von Seltsamkeit tragenden Teilchen in Schwerionen-Kollisionen überarbeitet werden.

Für die Experimente am SIS wurden Argon-Atomkerne auf 94 Prozent der Lichtgeschwindigkeit beschleunigt und zur Kollision mit Kernen gleicher Masse gebracht. Die Reaktionsprodukte dieser Stöße zeichnete das Detektorsystem HADES auf. Ein Großteil der Bewegungsenergie wird beim Zusammenprall in Masse neugebildeter Teilchen umgewandelt. Gerade schwere Teilchen wie das Xi entstehen dabei sehr selten, doch, wie die aktuellen Ergebnisse zeigen, deutlich häufiger als vorhergesagt.

Durch Kernstöße verdichtete Kernmaterie wird unter anderem untersucht, um im Labor frühe Evolutionsphasen der Materie im Urknall und die anschließende Bildung der chemischen Elemente nachzustellen. Seltene seltsame Teilchen sind sensible Indikatoren für diese Prozesse. Hochkomprimierte Kernmaterie befindet sich auch heute noch im Inneren von Neutronensternen, die neben den Schwarzen Löchern die dichtesten Materiekonzentrationen im Universum darstellen.

Veröffentlichung:
HADES Collaboration, „Deep Subthreshold Xi-Production in Ar+KCl Reactions at 1.76A GeV“, in: Phys. Rev. Lett. 103 (2009), 132301. DOI: 10.1103/PhysRevLett.103.132301
Weitere Informationen:
Prof. Burkhard Kämpfer* / Dr. Roland Kotte
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Strahlenphysik
Tel.: 0351 260 – 3258 / – 2323
Email: b.kampfer@fzd.de / r.kotte@fzd.de
*seit kurzem gewähltes Mitglied der Academia Europaea – The Academy of Europe (http://www.acadeuro.org)
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 400, 01328 Dresden
Tel.: 0351 260 – 2450 oder 0160 969 288 56
Email: presse@fzd.de
Information:
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit, Struktur der Materie und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:
– Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
– Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
– Wie schützt man Mensch und Umwelt vor technischen Risiken?
Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird als Mitglied der Leibniz-Gemeinschaft von Bund und Land gefördert, verfügt über ein Budget von mehr als 70 Mio. Euro (2008) und beschäftigt rund 750 Personen.

Media Contact

Dr. Christine Bohnet idw

Weitere Informationen:

http://www.fzd.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer