Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren fügt Bleche besser zusammen

27.07.2016

Rührreibschweißen ist ein noch junges und damit oftmals unbekanntes Presschweißverfahren zum Fügen von flächigen Bauteilen und Halbzeugen aus Leichtmetallen.

Wissenschaftler der Universität Stuttgart entwickelten nun zwei neue Verfahrensvarianten, die den Anwendungsbereich des Rührreibschweißens erheblich erweitern. Durch diese Verfahrensvarianten wird es erstmals möglich, Stahl- oder Aluminiumbleche unterschiedlicher Dicke wirtschaftlich und hochfest mit dem Rührreibschweißprozess zu fügen.


Mit den neu entwickelten Rührreibschweißverbindungen ist es möglich, Stahl- und Aluminiumbleche unterschiedlicher Dicke wirtschaftlich und hochfest zu verbinden.

TLB GmbH

Die TLB GmbH ist im Auftrag der Universität mit der weltweiten wirtschaftlichen Umsetzung dieser zukunftsweisenden Technologie beauftragt.

Rührreibschweißen ist ein noch junges und damit oftmals unbekanntes Presschweißverfahren zum Fügen von flächigen Bauteilen und Halbzeugen aus Leichtmetallen. Aufgrund der hohen erzielbaren Verbindungsfestigkeit und dem damit einhergehenden Leichtbaupotential wird der Prozess zunehmend in der Automobilindustrie, dem Maschinenbau und im Flugzeug- oder Schienenfahrzeugbau eingesetzt.

Wissenschaftler der Universität Stuttgart entwickelten nun zwei neue Verfahrensvarianten, die den Anwendungsbereich des Rührreibschweißens erheblich erweitern. Durch diese Verfahrensvarianten wird es erstmals möglich, Stahl- oder Aluminiumbleche unterschiedlicher Dicke wirtschaftlich und hochfest mit dem Rührreibschweißprozess zu fügen. So lässt sich die Werkstoffausnutzung von dünnen Stahlblechen in Aluminium-Stahl-Mischkarosserien um bis zu 100 Prozent steigern.

Im Fahrzeugbau und im Bereich Maschinenbau werden in zunehmendem Maße die beiden Werkstoffe Stahl und Aluminium gemeinsam eingesetzt. Dadurch können die Vorteile beider Werkstoffe wie z.B. die hohe Festigkeit der Stähle und die geringe Dichte von Aluminium kombiniert werden. Aufgrund der unterschiedlichen Festigkeiten der beiden Werkstoffe werden diese oftmals in unterschiedlichen Materialstärken eingesetzt. Die hochfeste Verbindung der Werkstoffe Stahl und Aluminium stellt daher ein elementares Problem der industriellen Fügetechnik dar.

Bislang werden Verbindungen zwischen artfremden Materialien unterschiedlicher Stärke durch Überlappschweißen hergestellt, da mit diesem Verfahren hohe Biegemomente und Zug-Festigkeiten erreicht werden. Dabei können jedoch störende Kanten entstehen. Darüber hinaus besteht durch die direkte Kombination von unterschiedlichen Werkstoffen und den aus der Überlappung resultierenden Spalten eine erhöhte Gefahr für Korrosion.

Mit den am Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre (IMWF) der Universität Stuttgart entwickelten Rührreibschweißverbindungen ist es möglich, Stahl- und Aluminiumbleche unterschiedlicher Dicke wirtschaftlich und hochfest zu verbinden.
Die am IMWF und der MPA Stuttgart forschenden Ingenieure und Techniker Prof. Dr. Ing. Stefan Weihe, Martin Werz, Max Hoßfeld und Oliver Volz entwickelten zwei Verfahren, mit denen erstmals unterschiedlich dicke Bleche als Stumpfstoß hochfest verbunden werden können. Die Verbindungen weisen dabei eine sehr hohe Zug- und Schwingfestigkeit auf.

Bei dem einen Verfahren wird das Stahlblech so gefalzt, dass dessen Fügequerschnitt zur Anbindung an das Aluminiumblech im Bereich der Fügezone verdoppelt wird. Hierdurch wird der Querschnitt des dünneren, festeren Bleches an der Verbindungsstelle erhöht. Dadurch kann das weichere Aluminium über seine gesamte Querschnittsfläche an den Stahl angebunden werden.

Mit dem zweiten an der Universität Stuttgart entwickelten Verfahren kann in nur einem Schweißvorgang durch ein neu entwickeltes Werkzeug eine kombinierte Überlapp- und Stumpfstoßverbindung hergestellt werden. Die resultierende Anbindungsfläche im Vergleich zu konventionellen Stumpfstoßverbindungen mehr als verdoppelt. Die vergrößerte Anbindungsfläche und die hohe Formänderungsfestigkeit des Aluminiums führen zu exzellenten statischen und zyklischen Verbindungsfestigkeiten.

Bei der Verbindung solcher automobiltypischer Werkstoffe werden mit den neuen Verfahren Festigkeiten der Fügestelle von bis zu 99,4 Prozent des Stahlbleches erreicht. Damit ermöglichen die neu entwickelten Schweißverbindungen die Einsparung von Werkstoffen und erhöhen gleichzeitig die Sicherheit der Fahrzeuginsassen bei Unfällen. Gerade im Schweißprozess erhöhen die neu entwickelten Verfahren die Wirtschaftlichkeit: sie erfordern weniger Arbeitsschritte und weniger Energie.

Neben vielen Anwendungen in der Automobilindustrie ist das Verfahren auch für die Elektroindustrie oder den Bereich der Elektromobilität interessant, weil mit dem Rührreibschweißen unter anderem auch Aluminium-Kupfer-Verbindungen möglich sind.

Die Technologie-Lizenz-Büro (TLB) GmbH unterstützt die Universität Stuttgart bei der Patentierung und Vermarktung der Innovationen. TLB ist im Auftrag der Universität mit der weltweiten wirtschaftlichen Umsetzung dieser zukunftsweisenden Technologien beauftragt. Für weitere Informationen: Dr.-Ing. Michael Ott (mott@tlb.de).

Weitere Informationen:

http://www.tlb.de
http://www.imwf.uni-stuttgart.de/

Annette Siller | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht TUM Agenda 2030: Kräfte bündeln zur Additiven Fertigung: TUM erforscht digitale Fertigungstechnologie der Zukunft
09.10.2019 | Technische Universität München

nachricht Aktivität von edelmetallfreien Katalysatorpartikeln bestimmen
04.10.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sensorschleuse Argus von dormakaba mit ICONIC Award 2019 ausgezeichnet

15.10.2019 | Förderungen Preise

Rezeptorkomplexe am Fließband

15.10.2019 | Biowissenschaften Chemie

Quantenbits ins Glasfasernetz bringen: Start des Projekts QFC-4-1QID

15.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics