Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovative Laserverfahren und –systeme für die Dünnschichtphotovoltaik

26.06.2012
Innovationsallianz Photovoltaik: BMBF-Verbundprojekt erforscht neue Laserprozesse für die Herstellung von CIS-Solarmodulen mit höherer Effizienz bei niedrigeren Herstellungskosten.

Die Photovoltaik (PV) ist ihren Kinderschuhen entwachsen und hat sich zu einer respektablen Industrie entwickelt. So waren nach dem Marktreport der „European Photovoltaic Industry Association“ Ende 2011 weltweit bereits ca. 67 GW PV-Leistung installiert. Die aktuellen Zahlen lassen erwarten, dass die Netzparität, also die Kostengleichheit von aus Solarenergie erzeugtem und aus dem Netz bezogenen Strom, für Privathaushalte in Deutschland bereits 2012 erreicht sein wird.


Strukturierung einer CIS-Schicht mit einem grünen Pikosekundenlaser © Robert Bosch GmbH


Hochgeschwindigkeits-Bildserienaufnahme einer durch einen Laserpuls abgelösten Scheibe der Rückkontaktschicht eines CIS-Solarmoduls. Der nur wenige billionstel Sekunden kurze Laserpuls sprengt eine ca. 0,3 Mikrometer dicke und 20 Mikrometer durchmessende Molybdänscheibe (Pfeile) von der Glasscheibe ab. Universität Stuttgart, Institut für Strahlwerkzeuge / Robert Bosch GmbH

Aktuell kämpfen viele, besonders auch deutsche Zell- und Modulhersteller mit stark gefallenen Marktpreisen und einem extrem aggressiven Wettbewerb. Dennoch ist nach Meinung vieler Experten abzusehen, dass die Photovoltaik sich mittel- und langfristig zu einer wichtigen Säule der zukünftigen Energieversorgung entwickeln wird. Insbesondere für vergleichsweise sonnenreiche Schwellenländer mit stark steigendem Energiebedarf bietet Photovoltaik die Chance, die umweltschädliche Nutzung fossiler Energieträger zur Stromerzeugung zu verringern.

Den Spagat zwischen Effizienzsteigerung und Kostensenkung schaffen

Der entscheidende Schlüssel für den wirtschaftlichen Erfolg einzelner Unternehmen, wie auch für den Erfolg der Technologie insgesamt lag und liegt in der Effizienz der Solarmodule, kombiniert mit ihren Herstellkosten in Euro pro Watt. Die zentrale Herausforderung dabei sind höhere Moduleffizienzen bei gleichzeitig nochmals deutlich reduzierten Produktionskosten.

Aktuell besitzen sowohl kristalline als auch Dünnschicht-Technologien weiterhin großes Innovationspotential auf allen Stufen der Wertschöpfungskette. Insbesondere die Potentiale in der CIS-Dünnschicht¬technologie werden hierbei als besonders groß angesehen. CIS steht dabei für Kupfer-Indium-Diselenid, das als dünne, aktive Schicht in den CIS-Solarzellen für die Umwandlung von Sonnenlicht in elektrischen Strom sorgt.

Mit der im Jahr 2010 gestarteten „Innovationsallianz Photovoltaik“ will die Bundesregierung die Anpassungsprozesse in der PV-Branche begleiten und dazu beitragen, die Wettbewerbsfähigkeit der deutschen Photovoltaikindustrie mittel- und langfristig zu sichern und auszubauen.

Das vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Verbundprojekt „Tailored for Next PV – T4nPV“ hat als Teil der Innovationsallianz das Ziel, den Spagat zwischen Effizienzsteigerung und Kostensenkung der CIS-Technologie zu verkleinern. Zu diesem Zweck sollen neue Lasertechniken für die integrierte Verschaltung in CIS-Dünnschichtmodulen erarbeitet werden, welche eine deutlich präzisere und günstigere Massenfertigung als heute erlauben.

Neue Lasersysteme für Dünnschicht-Solarmodule der nächsten Generation

Als zentraler Bestandteil dieser Module werden zur Wandlung des Sonnenlichts in Strom mehrere nur wenige mikrometerdünne Schichten benötigt. Die Schichten werden in einigen Schritten übereinander auf Glasscheiben abgeschieden. Zwischen den einzelnen Abscheidungsschritten werden dabei Trenngräben eingebracht, welche die Schichten in einzelne Zellen aufteilen und diese integriert in Serie verschalten. Diese integrierte Serienverschaltung ermöglicht so eine hohe Modulspannung bei kleinem Modulstrom und reduziert dadurch die Widerstandsverluste. Da die Verschaltungsgräben jedoch die aktive Fläche des Moduls verringern, erlauben nur extrem schmale und optimal zueinander ausgerichtete Trennschnitte eine Maximierung der Moduleffizienz.

Heute werden zur Verschaltung mechanisch abtragende und damit auch verschleißende Werkzeuge verwendet, welche sehr breite und unregelmäßige Trenngräben erzeugen. Diese mechanischen Werkzeuge sollen durch einen schnellen, berührungs- und damit verschleißfreien Laser ersetzt werden, der gleichzeitig eine deutliche Reduktion der Verschaltungsbreiten ermöglicht. Dadurch kann die Moduleffizienz signifikant gesteigert werden. Die hierfür geplanten Forschungsarbeiten erfordern einen ganzheitlichen Ansatz, der die Grundlagen des Laserprozesses, die notwendigen Systemkomponenten und speziell angepasste Laserstrahlquellen umfasst.

Für siliziumbasierte Dünnschichttechnologien sind Laserprozesse zur Verschaltung bereits entwickelt. Das Dünnschichtmaterial CIS kann jedoch heute noch nicht zufriedenstellend mit dem Laser strukturiert werden. Eine der Herausforderungen liegt im Schichtaufbau begründet: Da die erste Schicht nicht lichtdurchlässig ist, muss bei CIS der zweite und dritte Strukturierungsschritt von der Schichtseite her erfolgen. Hier ermöglichen erst neue Lasersysteme mit kürzeren Pulsen ein selektives Abtragen der dünnen Schichten ohne Schädigung der darunter liegenden Strukturen.

Hintergrundinfos zum Projekt

Im Rahmen von T4nPV haben sich acht starke Partner aus Industrie und Instituten zusammen getan, um ganzheitlich die erforderlichen Arbeiten an Laserprozess, Optik, System und Produkt anzugehen und im Erfolgsfall mit kostengünstigen, hocheffizienten CIS Solarmodulen, sowie wettbewerbsfähigen Hochleistungs-Systemkomponenten am Markt Vorteile zu erzielen.

Partner des BMBF-Verbundprojekts T4nPV
• Robert Bosch GmbH
• Bosch Solar CisTech GmbH
• Befort Wetzlar OD GmbH
• LayTec AG
• TEM Messtechnik GmbH
• Trumpf Laser GmbH + Co.
• Institut für Angewandte Physik (IAP) der Universität Jena
• Institut für Strahlwerkzeuge (IFSW) der Universität Stuttgart
Das Verbundprojekt ist im August 2011 gestartet und läuft über drei Jahre bis Juli 2014. Der Verbund wird im Rahmen der Innovationsallianz Photovoltaik vom BMBF mit insgesamt 11,5 Millionen Euro gefördert. Mit der Projektträgerschaft hat das BMBF die VDI Technologiezentrum GmbH beauftragt.

Pressemitteilung des BMBF-Verbundprojekts T4nPV

Ansprechpartner

Dr. Andreas Letsch
Robert Bosch GmbH
Postfach 300240
70442 Stuttgart
Tel.: 0711/811-8204
Mail.: Andreas.Letsch@de.bosch.com

Daniela Metz | VDI
Weitere Informationen:
http://www.photonikforschung.de/

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Fehlerzustände frühzeitig erkennen dank innovativer akustischer Verfahren zur Qualitätsprüfung
18.10.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Härtere Werkzeuge aus dem 3D-Drucker – Dresdner stellen neues Verfahren für Hartmetallindustrie vor
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nanodiamanten als Photokatalysatoren

18.10.2018 | Materialwissenschaften

Schichten aus Braunschweig auf dem Weg zum Merkur

18.10.2018 | Physik Astronomie

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics