Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrosynthese von Alkoholen energieeffizienter gestalten

18.10.2019

CO2 als Rohstoff

Wie eine einstufige elektrochemische Reduktion von CO2 zu Methanol, Ethanol, Propanol und Butanol gelingt

Ein einstufiges Verfahren zur elektrochemischen Herstellung von Methanol, Ethanol, Propanol und Butanol aus CO2 und Wasser entwickeln – so lautet die Zielsetzung von »ElkaSyn – Steigerung der Energieeffizienz der elektrokatalytischen Alkoholsynthese«.


© Fraunhofer UMSICHT

300-ml-Hochdruckreaktor für die elektrochemische Alkoholsynthese

Hinter dem Forschungsprojekt stehen das Fraunhofer UMSICHT (Koordination), die Siemens AG, die Mitsubishi Hitachi Power Systems Europe GmbH, das Institut für Technische Chemie der Universität Stuttgart sowie die Lehrstühle für Anorganische Chemie I und für Verfahrenstechnische Transportprozesse der Ruhr-Universität Bochum.

Vorliegende Konzepte zur stofflichen CO2-Nutzung sehen häufig einen zweistufigen Prozess vor. Am Anfang steht ein Elektrolyseprozess, bei dem Wasserstoff mit Hilfe von regenerativem Strom hergestellt wird. Es folgt ein katalytischer Prozessschritt.

Dabei wird der Wasserstoff mit CO2 zum gewünschten Endprodukt – zum Beispiel Alkohole – umgesetzt. Die Nachteile: Zum einen muss das Zwischenprodukt Wasserstoff gespeichert werden, zum anderen treten bei der Elektrolyse zur Wasserstoffbereitstellung Energieverluste auf.

Energieeffiziente Reduktion von CO2 zu Alkoholen

Hier setzt das Projekt »ElkaSyn – Steigerung der Energieeffizienz der elektrokatalytischen Alkoholsynthese« an. Die Forschenden wollen Verfahren entwickeln, mit denen die C1- bis C4-Alkohole Methanol, Ethanol, Propanol und Butanol in einem einstufigen Prozess direkt mittels erneuerbarer Energie, Kohlenstoffdioxid und Wasser erzeugt werden.

Bei einer solchen einstufigen elektrochemischen Reduktion von CO2 zu Alkoholen entfallen sowohl der Aufwand für die Speicherung des Zwischenprodukts Wasserstoff als auch die Systemkosten für einen Reaktor, in dem Wasserstoff und CO2 zu den Zielprodukten umgesetzt werden.

Durch die erfolgreiche Entwicklung des einstufigen Prozesses wird ein Energieeinsparpotenzial von bis zu 20 Prozent im Vergleich zu einem zweistufigen Verfahren erwartet.

Auf dem Weg zu einer solchen einstufigen Reduktion setzen die Forschenden auf zwei unterschiedliche Reaktorkonzepte. Sie entwickeln bzw. untersuchen Systemkomponenten für ein Hochdruck- und ein Normaldruckverfahren.

Darunter Eisen-Nickel-Sulfide, kupferbasierte Verbindungen auf oxidischen und Kohlenstoffträgern sowie poröse Gasdiffusionselektroden, in denen Gase mit einem elektronenleitenden, ggfs. Katalysator-aktivierten Festkörper und einer Elektrolyselösung in Kontakt stehen und umgesetzt werden.

Zur Bedeutung von Methanol, Ethanol, Propanol und Butanol

Die Endprodukte Methanol, Ethanol, Propanol und Butanol haben für verschiedene Prozesse eine große Bedeutung. Der C1-Alkohol Methanol ist – abgesehen von seiner Rolle als Energieträger – eine der wichtigsten Basischemikalien und wird größtenteils zu Formaldehyd, Essigsäure, Methyltertbutylether, Methylmethacrylat, Methylchlorid und Methylaminen weiterverarbeitet.

Die C2- bis C4-Alkohole Ethanol, Propanol und Butanol können zu den heute noch aus Erdöl gewonnenen Alkenen und Dienen weiterverarbeitet werden. So lassen sich Ethanol und Propanol zu Ethen und Propen umsetzen – den Ausgangsstoffen für die Kunststoffe Polyethylen und Polypropylen. Butanol kann zur Herstellung von Butadien verwendet werden – dem Ausgangsstoff für synthetischen Kautschuk.

FÖRDERHINWEIS

Das Projekt »ElkaSyn – Steigerung der Energieeffizienz der elektrokatalytischen Alkoholsynthese« wird vom Bundesministerium für Wirtschaft und Energie (BMWi) gefördert. Laufzeit: 1. August 2019 bis 31. Juli 2022. Förderkennzeichen: 03ET1642C.

Wissenschaftliche Ansprechpartner:

Dipl.-Chem.-Ing. Heiko Lohmann
Gruppenleiter Katalytische Verfahren
Telefon +49 208 8598-1197

Dipl.-Chem. Iris Kumpmann | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT
Weitere Informationen:
https://www.umsicht.fraunhofer.de/de/presse-medien/pressemitteilungen/2019/ElkaSyn.html

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Mit optimierten Logistikprozessen Energieeinsatz und CO2-Ausstoß reduzieren
22.10.2019 | Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF

nachricht TUM Agenda 2030: Kräfte bündeln zur Additiven Fertigung: TUM erforscht digitale Fertigungstechnologie der Zukunft
09.10.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Selbstorganisation weicher Materie im Detail verstehen

12.11.2019 | Physik Astronomie

Magnetisches Tuning auf der Nanoskala

12.11.2019 | Physik Astronomie

»KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«

12.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics