Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alcanivorax borkumensis: Bakterien zur Bekämpfung von Ölkatastrophen?

26.09.2013
Internationale Forscherteams haben die Wirkungsweise von zwei Bakterienarten entschlüsselt, die künftig zur Bekämpfung von Ölkatastrophen eingesetzt werden könnten.

Alcanivorax borkumensis wandele Kohlenwasserstoffe in Fettsäuren um und baue diese in die Zellmembran ein, schreiben Wissenschaftler der Helmholtz-Zentren für Umweltforschung und Infektionsforschung im Fachjournal Applied and Environmental Microbiology.


Die Ölbohrinsel "Deepwater Horizon" war nach einer Explosion im April 2010 gesunken. Das Unglück führte zu einer verheerenden Ölpest im Golf von Mexiko. (Foto: U.S. Coast Guard)

Neue Erkenntnisse über das Bakterium Oleispira antarctica seien wichtig um die Anpassung an niedrige Temperaturen zu verstehen und könnten helfen, Strategien gegen Ölpests in Polarmeeren oder der Tiefsee zu entwickeln, schreiben Forscher im Fachjournal Nature Communications.

Bisher wurden bei Ölkatastrophen häufig Chemikalien eingesetzt, um das Öl aufzulösen, dadurch leichter abbaubar zu machen und von der Meeresoberfläche zu entfernen. Zur Bekämpfung der Ölpest im Golf von Mexiko, die durch die Havarie der Offshore-Ölbohrplattform „Deepwater Horizon“ 2010 entstanden war und bei der etwa 700.000 Tonnen Rohöl ins Meer gelangt sind, sollen nach Angaben der US-Umweltbehörde EPA über sieben Millionen Liter dieser Chemikalien versprüht worden sein. Zu den bekanntesten zählten Dispergatoren mit dem Markennamen Corexit, die nach dem Tankerunglück der Exxon Valdez in Alaska 1989 entwickelt worden sind.

Diese Stoffe sind jedoch wegen ihrer Nebenwirkungen für Umwelt und Menschen zunehmend in die Kritik geraten. Im Rahmen des EU-Projektes BACSIN haben daher Wissenschaftler aus verschiedenen Ländern nach Alternativen gesucht. „Ein Ansatz könnte beispielsweise sein, ölabbauende Bakterien in ihrem Wachstum zu stimulieren oder z.B. durch Gefriertrocknung besser anwendbar zu machen, um sie leichter als Pulver über dem Ölteppich zu versprühen“, erklärt Dr. Hermann J. Heipieper vom UFZ die Idee.

„Allerdings sind noch viele Details zu klären bis eine solche Technologie zur Bekämpfung von Ölkatastrophen eingesetzt werden kann. Priorität sollte daher immer die Vorsorge haben. So sehr wir uns auch anstrengen, alle Reparaturversuche werden die Natur nicht in den ursprünglichen Zustand versetzen können. Ganz davon zu schweigen, dass Umweltschäden zu reparieren immer teurer ist, als diese zu vermeiden.“

Ölabbauende Bakterien sind keine Erfindung des Menschen. Sie gibt es seit Millionen von Jahren. Neu ist lediglich die Menge des Öls, das bei Katastrophen ins Meer gelangt. Daher sucht die Wissenschaft nach Wegen, wie die natürlichen Abbauprozesse beschleunigt werden könnten. Im Fokus stehen dabei Kohlenwasserstoffaufbrechende - so genannte marine hydrocarbonoklastische - Bakterien. Diese Spezialisten in marinen Ökosystemen sind in der Lage, aliphatische Kohlenwasserstoffe abzubauen und als Energiequelle zu nutzen. Die Bakterien sind im Meerwasser weltweit verbreitet, aber nur in geringen Mengen. Stoßen sie auf Rohöl, dann vermehrt sich ihre Population stark. Es kommt zu einer eine Art Blüte, wie dies von marinen Algen bekannt ist.

Trotz ihrer wichtigen ökologischen Bedeutung ist noch relativ wenig über die Vorgänge in den Zellen dieser Bakterien bekannt. Forscher des UFZ unter Leitung von Dr. Hermann J. Heipieper führten daher detaillierte physiologische und genomische Analysen der beiden Referenzstämme dieser Gruppe von Bakterien, Alcanivorax borkumensis und Oleispira antarctica durch, die über ein großes Anpassungspotenzial verfügen. Dies zeigt sich besonders in Veränderungen der Zelloberfläche, dem direkten Einbau der biologisch oxidierten aliphatischen Kohlenwasserstoffe in die Zellmembranen und die Regulierung von Genen zur Anpassung an Umweltstress.

Alcanivorax borkumensis ist ein im Meer lebendes Bakterium, das seinen Namen nach dem Fundort, der Insel Borkum, erhalten hat, aber weltweit gefunden wurde. Es gilt als einer der wichtigsten Organismen, die marine Ölverschmutzungen abbauen können. Trotzdem fehlten bisher Informationen zum Wachstum und zur Physiologie dieser Bakterien im Zusammenhang mit Kohlenstoffen verschiedener Kettenlängen. Die neuen Untersuchungen ergaben, dass das Bakterium besonders effektiv Alkane mit Kettenlängen zwischen 12- und 19-Kohlenstoffatomen verarbeitet. "Das Zellwachstum hat bestätigt, dass dieses Bakterium in der Lage ist, Zwischenprodukte der Fettsäuren nicht nur in den eigenen Körper einzubauen, sondern auch zu verändern", erklärt Heipieper.

Für die wesentlich kälteren Polarmeere oder die Tiefsee wäre dagegen Oleispira antarctica das geeignetere Bakterium. Es kommt mit Temperaturen um 5 Grad Celsius gut zurecht, wie sie zum Beispiel am Boden des Golfs von Mexiko herrschen. Mit elf Proteinkristallstrukturen hat es die größte Menge von Strukturen unter den kälteliebenden Mikroorganismen und deutlich mehr negative Ladungen an der Oberfläche als Mikroorganismen in gemäßigten Temperaturen. Auch wenn bei diesem Bakterium die meisten der Enzyme bei Kälte nicht mehr optimal funktionieren, so reicht es dennoch, um das Wachstum zu beschleunigen und andere Konkurrenten zu überholen, wenn plötzlich Rohöl als Nahrungsquelle zur Verfügung steht. Die Allgegenwärtigkeit dieser Bakterien ist ein Beleg für ihre ökologische Wettbewerbsfähigkeit in kalten Umgebungen. Das offenbart ihr Potenzial für die Entwicklung biotechnologischer Ansätze zur Bekämpfung von Ölpests in Polargebieten. Die neuen Erkenntnisse über die beiden Bakterienarten sind ein kleiner, aber wichtiger Schritt bei der Suche nach Alternativen zu den bisher eingesetzten giftigen Dispersionsmitteln. Tilo Arnhold

Publikationen:
Naether D.J., Slawtschew S., Stasik S., Engel M., Olzog M., Wick L.Y., Timmis K.N., Heipieper H.J. (2013): Adaptation of hydrocarbonoclastic Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds - a physiological and transcriptomic approach. Appl. Environ. Microbiol. 79:4282-4293, in press. doi: 10.1128/AEM.00694-13
http://dx.doi.org/10.1128/AEM.00694-13
Die Studie wurde von der Europäischen Kommission im Rahmen des EU-Projektes BACSIN gefördert.
Kube M., Chernikova T.N., Al-Ramahi Y., Beloqui A., Lopez-Cortez N., Guazzaroni M.E., Heipieper H.J., Klages S., Kotsyrbenko O.R., Langer I., Nechitaylo T.Y., Lünsdorf H., Fernández M., Juárez S., Ciordia S., Singer S., Kagan O., Egorova O., Petit P.A., Stogios P., Kim Y., Tchigvintsev A., Flick R., Denaro R., Genovese M., Albar J.P., Reva O.N., Martínez-Gomariz M., Tran H., Ferrer M., Savchenko A., Yakunin A.F., Yakimov M.M., Golyshina O.V., Reinhardt R., Golyshin P.N. (2013): Functional genome analysis of Oleispira antarctica RB-8, a key oil-degrading bacterium in cold and deep marine environments. Nature Communications 4:2156, 23 July 2013. doi:10.1038/ncomms3156
http://dx.doi.org/10.1038/ncomms3156
Die Studie wurde von der Europäischen Kommission im Rahmen der EU-Projekte MAMBA, ULIXES, MAGIC PAH und MICROB3, von der Regierung Kanadas, den Nationalen Gesundheitsinstituten der USA, der Max-Planck-Gesellschaft (MPG) sowie der Deutschen Forschungsgemeinschaft (DFG) gefördert.
Weitere Informationen:
Dr. Hermann J. Heipieper
Helmholtz-Zentrum für Umweltforschung (UFZ)
Telefon: 0341-235-1694
http://www.ufz.de/index.php?de=4531
oder über
Tilo Arnhold, Susanne Hufe (UFZ-Pressestelle)
Telefon: 0341-235-1635, -1630
http://www.ufz.de/index.php?de=640
Weiterführende Links:
EU-Projekt “Bacterial abiotic cellular stress and survival improvement” (BACSIN)
http://www.unil.ch/bacsin
„Wie Agent Orange im Golf von Mexiko“ (ZEIT.de vom 18.06.2010):
http://www.zeit.de/wissen/gesundheit/2010-06/oelpest-chemie-gesundheit
"Ölteppich: Bakterien sollen Dreckbrühe verputzen" (Spiegel.de vom 31.07.2006):
http://www.spiegel.de/wissenschaft/natur/oelteppich-bakterien-sollen-dreckbruehe...
Im Helmholtz-Zentrum für Umweltforschung (UFZ) erforschen Wissenschaftler die Ursachen und Folgen der weit reichenden Veränderungen der Umwelt. Sie befassen sich mit Wasserressourcen, biologischer Vielfalt, den Folgen des Klimawandels und Anpassungsmöglichkeiten, Umwelt- und Biotechnologien, Bioenergie, dem Verhalten von Chemikalien in der Umwelt, ihrer Wirkung auf die Gesundheit, Modellierung und sozialwissenschaftlichen Fragestellungen. Ihr Leitmotiv: Unsere Forschung dient der nachhaltigen Nutzung natürlicher Ressourcen und hilft, diese Lebensgrundlagen unter dem Einfluss des globalen Wandels langfristig zu sichern. Das UFZ beschäftigt an den Standorten Leipzig, Halle und Magdeburg mehr als 1.100 Mitarbeiter. Es wird vom Bund sowie von Sachsen und Sachsen-Anhalt finanziert.

http://www.ufz.de/

Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie sowie Luftfahrt, Raumfahrt und Verkehr. Die Helmholtz-Gemeinschaft ist mit 35.000 Mitarbeiterinnen und Mitarbeitern in 18 Forschungszentren und einem Jahresbudget von rund 3,8 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des großen Naturforschers Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Susanne Hufe | UFZ News
Weitere Informationen:
http://www.ufz.de/index.php?de=32058
http://www.helmholtz.de/

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Meeresmüll in entlegensten Regionen
13.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Wie bekommt man das Problem Plastikmüll in den Griff?
03.08.2018 | Hochschule für Angewandte Wissenschaften Hamburg

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics