Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gruppendynamik bei Atomen -- DESY-Forscher beobachten erstmals die kollektive Lamb-Verschiebung

14.05.2010
Eine Gruppe gleicher Atome verhält sich bei Einstrahlung von Licht anders als ein Einzelatom. Gemeinsam leuchten die Atome in längerwelligem Licht als das ein einzelnes Atom tun würde.

Dieser Effekt – kollektive Lamb-Verschiebung genannt – konnte jetzt erstmalig von einer Forschergruppe um Dr. Ralf Röhlsberger vom Forschungszentrum DESY nachgewiesen werden.

Die Wissenschaftler von DESY, ESRF (Frankreich) und Universität Leuven (Belgien) wiesen damit einen Effekt nach, der vor mehr als 35 Jahren theoretisch vorhergesagt wurde. Die Ergebnisse des Experiments, das an der ESRF in Grenoble durchgeführt wurde, werden in der aktuellen Ausgabe der Zeitschrift Science veröffentlicht.

Die Lamb-Verschiebung – oder Lamb-Shift – ist eine kleine Änderung der Schwingungsfrequenz von Elektronen im Atom. Sie wird sichtbar, wenn man Atome mit Licht zum Leuchten anregt. Die Frequenzverschiebung entsteht dadurch, dass das angeregte Atom sein Licht erst einige Male abstrahlt und wieder selbst absorbiert bevor es in seinen Grundzustand zurückkehrt. Die Entdeckung der Lamb-Verschiebung im Wasserstoff gab 1947 den Anstoβ zur Entwicklung der Quantenelektrodynamik (QED) als einheitlicher Theorie der Wechselwirkung zwischen Licht und Materie. Für seine Entdeckung erhielt der Physiker Willis Lamb 1955 den Nobelpreis.

Wird nun ein Ensemble von vielen identischen Atomen zum Leuchten angeregt, so ist es möglich, dass das emittierte Licht eines Atoms nicht nur von sich selbst sondern auch von einem anderen Atom innerhalb der Gruppe absorbiert und wieder abgestrahlt werden kann. So ist das Licht, das von diesen Atomen ausgesendet wird, energieärmer und somit deutlich ins Rote verschoben im Vergleich zur Abstrahlung eines einzelnen Atoms.

Für ihre Experimente entwickelten die Wissenschaftler um Röhlsberger eine neue Messmethode: Sie platzierten ein Ensemble von Eisen-57-Atomen zwischen zwei nur wenige Nanometer voneinander entfernte Platinspiegel und bestrahlten diese Anordnung mit Röntgenstrahlung. Auf diese Weise konnten sie tatsächlich die vorhergesagte kollektive Frequenzverschiebung messen, obwohl man lange Zeit glaubte, dass die Atome dafür nicht weiter als eine Lichtwellenlänge voneinander entfernt sein dürften. Die Forschergruppe machte sich zunutze, dass die Strahlung der Eisen-57-Atome zwischen den Platinspiegeln enorm verstärkt wird, so dass die kollektive Lamb-Verschiebung deutlich sichtbar wird. Mit Hilfe der Mößbauerspektroskopie konnte die Verschiebung sehr genau bestimmt werden. Die gemessenen Werte stehen in perfekter Übereinstimmung mit den theoretischen Vorhersagen.

Die Experimentiermethode eröffnet außerdem neue Möglichkeiten, kollektive Effekte bei der Wechselwirkung von Licht und Materie zu studieren. So wiesen die Experimentatoren nach, dass das Licht des untersuchten atomaren Ensembles fast 100-mal schneller emittiert wurde als von einem einzelnen Atom – dieser Effekt wird Superradianz genannt. Die Superradianz ermöglicht einen sehr effizienten Übertrag von Lichtenergie in Materie und kann z.B. bei der Entwicklung neuartiger Bauelemente zur Nutzung der Sonnenenergie oder der Entwicklung von ultraschnellen Prozessoren für die optische Datenverarbeitung eine wichtige Rolle spielen.

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Neue Studie zur tiefen Hirnstimulation bei Parkinson-Erkrankung als Meilenstein der Therapie
29.05.2020 | Deutsche Gesellschaft für Neurologie e.V.

nachricht »Grüner« Wasserstoff oder »grüner« Strom für die Gebäudewärme?
29.05.2020 | Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics