Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Zeitliches Mikroskop“ erfasst kürzeste Lichtblitze

11.08.2016

Eine Arbeitsgruppe der Hochschule Emden/Leer wird die Zeitdiagnostik für den größten deutschen Laser entwickeln und bauen. Dies ist das Ziel eines neuen Forschungsprojektes, das im Juli gestartet ist und vom Bundesministerium für Bildung und Forschung (BMBF) mit einer Förderung in Höhe von 435 000 Euro unterstützt wird (Förderkennzeichen 05K16ME1). Gemeinsam mit einem Team des Deutschen Elektronen Synchrontons (DESY) in Hamburg, einem weltweit bedeutenden Forschungszentrum, will Prof. Dr. habil. Ulrich Teubner vom Institut für Lasertechnik (ILO) an der Hochschule ein hochinnovatives Meßsystem entwickeln und aufbauen, das anschließend für andere Nutzer am DESY zur Verfügung stehen wird.

Mit den extrem kurzwelligen Blitzen des Freie-Elektronen-Lasers „FLASH“, mit dem nationale und internationale Forschergruppen am DESY seit wenigen Jahren forschen, lassen sich beispielsweise chemische Reaktionen oder extrem schnelle Kristallstrukturänderungen „filmen“.


Die Arbeitsgruppe um Prof. Dr. Teubner

Bild: Hochschule Emden/Leer


Versuchsaufbau

Bild: Hochschule Emden/Leer

Das Messen der extrem kurzen Zeitabschnitte macht es möglich, dass der Ablauf genau untersucht, besser verstanden und auch gezielt beeinflusst werden kann. Dies sei sowohl für das grundlegende Verständnis in der Forschung, als auch für bestimmte Anwendungen hochinteressant, wie Teubner betont. So ließen sich beispielsweise Prozesse in Brennstoff- oder Solarzellen, aber auch schnelle Übergänge bei der Veränderung von Material- oder Biomolekülstrukturen genau erfassen.

„Man sieht, wie sich die Anordnung einzelner Atome in einem Atomgitter verändert, sozusagen wie durch ein zeitliches Mikroskop erfasst.“ Dadurch entstehen Aufnahmen in einer bisher noch nicht da gewesenen Präzision. Auch für die Untersuchung von Materialstrukturen zur Verbesserung von Werkstoffen und viele weitere Bereiche kann die neue Technologie eingesetzt werden.

Eingebunden in die Forschungsgruppe, die sich in den kommenden drei Jahren mit der Entwicklung des so genannten XUV-PUMA (Pulsdauermeßapparatur für die extrem kurzen XUV-Blitze/ XUV = extremes Ultraviolett) befassen wird, sind neben Teubner und dem Team aus Hamburg auch zwei Doktoranden, Studierende aus dem Studiengang Engineering Physics und wissenschaftliche Mitarbeiter der Hochschule Emden/Leer. Ein Bestandteil der Zeitdiagnostik ist ein spezielles Lasersystem, das zunächst im Hochleistungslaserlabor des ILO, in welchem ein großer Teil der relevanten wissenschaftlichen Möglichkeiten vorhanden ist, aufgebaut wird. Später soll dieses beim DESY als Bestandteil von XUV-PUMA implementiert werden und die gesamte Apparatur für Nutzer aus den unterschiedlichsten Interessengruppen zur Verfügung stehen.

Das Projekt wird im Rahmen der Verbundforschung des BMBF gefördert. Die Verbundforschung bindet Universitäten in der Entwicklung und dem Aufbau innovativer Methoden und Instrumente für große Forschungseinrichtungen ein. Sie ermöglicht auf diese Weise die Verknüpfung der herausragenden Kompetenzen der Hochschulen mit denen der Forschungseinrichtungen und steigert damit deren Leistungsfähigkeit und das Nutzungsspektrum.

Dipl.-Ing. Wilfried Grunau | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hs-emden-leer.de

Weitere Berichte zu: ILO Lasersystem Lichtblitze Mikroskop Präzision Solarzellen Verbundforschung desy

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Geometrie eines Elektrons erstmals bestimmt
23.05.2019 | Universität Basel

nachricht Galaxien als „kosmische Kochtöpfe“
23.05.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Im Focus: Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der...

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

Wissensparcour bei der time4you gestartet

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Geometrie eines Elektrons erstmals bestimmt

23.05.2019 | Physik Astronomie

Galaxien als „kosmische Kochtöpfe“

23.05.2019 | Physik Astronomie

Auflösen von Proteinstau am Eingang von Mitochondrien

23.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics