Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltgrößtes Spiegelteleskop öffnet erstes Infrarotauge: RUB-Astronomen entwickelten Steuersoftware

30.04.2010
LUCIFER 1: Entfernte und jüngste Galaxien entdecken

Am derzeit weltgrößten optischen Teleskop, dem Large Binocular Telescope (LBT), ist die drei Tonnen schwere Kombination aus Kamera und Spektrograph, LUCIFER 1, nach mehr als einem Jahrzehnt Entwicklung, Bau und Tests in Betrieb genommen worden. Das Instrument auf dem Mount Graham in Arizona wurde von einem Konsortium deutscher Institute in Zusammenarbeit mit dem Astronomischen Institut der Ruhr-Universität Bochum (AIRUB) gebaut.

Sein Zwilling (LUCIFER 2) soll Anfang 2011 am Teleskop ebenfalls zum Einsatz kommen. Beide Instrumente sollen spektakuläre Einblicke ins Universum ermöglichen – von unserer Milchstraße bis hin zu den am weitesten entfernten Galaxien.

LUCIFER erblickt das Licht

3.200 Meter über dem Meeresspiegel in den Pinaleo Mountains in Arizona blickt das LBT in den klaren Nachthimmel. Ausgestattet mit zwei 8,4m-Spiegeln bildet es als einzigartige Konstruktion das derzeit größte Teleskop der Welt. Das gesammelte Licht wird über weitere Spiegel bis zu LUCIFER 1 gelenkt. Die Kamera/Spektrograph-Kombination ist speziell für Untersuchungen im nah-infraroten Spektralbereich gebaut worden. Deswegen wird nur dieser für das Auge nicht sichtbare Anteil des Lichts in das Instrument weiter geleitet.

Inbetriebnahme-Phase am weltgrößten Teleskop

Viele Arbeitsaufenthalte der Bochumer Astronomen am LBT waren notwendig, um LUCIFER1 wissenschaftlich in Betrieb nehmen zu können. Dabei spielt die Software zur Bedienung und Ansteuerung der Kamera und des Teleskops die entscheidende Rolle. Erst sie ermöglicht dem Astronomen, das hochkomplizierte System für seine wissenschaftlichen Ziele einzusetzen. Verantwortlich für das Softwaresystem sind die Astronomen aus Bochum. Die Software wurde am Astronomischen Institut der RUB geplant, entwickelt und dann am Teleskop mit LUCIFER1 in Betrieb genommen. „Es ist schon beeindruckend zu sehen, wie unsere Software das 580 Tonnen schwere Teleskop auf den gewünschten Ort am Himmel richtet, gleichzeitig für LUCIFER1 die gewünschte Konfiguration einstellt und dann die Gewinnung der wissenschaftlichen Daten beginnt – und das alles völlig automatisiert“, sagt Projektleiter Dr. Marcus Jütte stolz. „Durch die Komplexität der Instrumente bekommt die Software eine große Bedeutung für den Erfolg“. Dafür verbrachte er zusammen mit seinem Mitarbeiter Dr. Volker Knierim mehrere Monate auf 3200m Höhe am LBT. „Die Arbeitsbedingungen waren außergewöhnlich dort oben. Im Winter waren wir auch schon mal mehrere Tage von der Außenwelt abgeschnitten“, erzählt Dr. Knierim.

Der Spektrograph

LUCIFER ist ein Mehrzweckinstrument: Damit es nicht selbst störende nah-infrarote Wärmestrahlung abgibt, wird es auf bis zu -213 Grad Celsius gekühlt. Es ermöglicht die Aufnahme eines großen Himmelausschnitts mit einer einzigartigen Fülle an Details. Neben der Aufnahme von Bildern mit bis zu 18 hochqualitativen Filtern erlaubt LUCIFER die simultane Spektroskopie von etwa zwei Dutzend Objekten im Infraroten durch lasergefertigte Schlitzmasken. Gewechselt werden die Masken mittels eines Roboters, der die Masken aus einem Magazin entnimmt und präzise in der Brennebene positioniert. Als ein Novum erlaubt es LUCIFER, ein ganzes Magazin mit Masken bei der extrem niedrigen Betriebstemperatur zu wechseln. Da sich das Innere des Instruments fast im Vakuum befindet, ist das Öffnen zum Entnehmen des Magazins ein äußerst aufwendiger Prozess. „Die Software muss die nötigen Abläufe zum Magazinwechsel absolut verlässlich durchführen – ein Fehler würde zur Zerstörung des Instruments führen“, sagt Kai Polsterer, Mitarbeiter am Astronomischen Institut.

In ferne Welten schauen

Die jetzt mit LUCIFER 1 möglichen Beobachtungen im Infrarotlicht sind bedeutend, um die Entstehung von Planeten und Sternen in unserer Milchstraße zu erforschen oder den Geheimnissen der fernsten und jüngsten Galaxien auf die Spur zu kommen. „In Kombination mit der großen Lichtstärke des LBT sind die Astronomen nun in der Lage, die spektralen Fingerabdrücke der schwächsten und am weitesten entfernten Objekte im Kosmos zu sammeln“, sagt Dr. Richard Green, der Direktor des LBT. „Nach der Fertigstellung der adaptiven Sekundärspiegel des LBT zur Korrektur atmosphärischer Turbulenzen wird LUCIFER seine volle Leistungsfähigkeit zeigen.“

Ein einzigartiger Erfolg für die deutschen Institute

Die Instrumente wurden durch ein Konsortium von fünf deutschen Instituten gebaut unter der Leitung des Zentrums für Astronomie Heidelberg (Landessternwarte Heidelberg, LSW) in Zusammenarbeit mit dem Max Planck Institut für Astronomie in Heidelberg (MPIA), dem Max Planck Institut für Extraterrestrische Physik in Garching (MPE), dem Astronomischen Institut der Ruhr-Universität in Bochum (AIRUB), sowie der Hochschule Mannheim. Die Beteiligung des Astronomischen Instituts an so einem internationalen Großprojekt ist nur durch die langfristige Förderung der Verbundforschung überhaupt möglich geworden, wodurch das Tor zur Spitzenforschung geöffnet wurde.

Weitere Informationen

Dr. Marcus Jütte, Astronomisches Institut, Tel.: 0234/32-23388, E-Mail: juette@astro.rub.de, Astronomisches Institut (AIRUB): http://www.astro.rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.astro.rub.de
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschneller Blick in die Photochemie der Atmosphäre
11.10.2019 | Max-Planck-Institut für Quantenoptik

nachricht Wie entstehen die stärksten Magnete des Universums?
10.10.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics