Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verwandlung im Licht

12.02.2019

Laserphysiker nehmen Schnappschüsse vom Kohlenstoffmolekül C₆₀ auf und weisen seine Verwandlung im starken Infrarotlicht nach

Gerät das Kohlenstoffmolekül C₆₀ unter den Einfluss eines starken infraroten Lichtfeldes, ändert es seine kugelartige Form hin zu einer länglichen.


Ein infraroter Laserpuls trifft auf ein Kohlenstoff-Makromolekül. Dabei ändert das Molekül seine Form und entlässt ein Elektron in die Umgebung.

Alexander Gelin

Diesen Vorgang konnten Laserphysiker des Labors für Attosekundenphysik (LAP) des Max-Planck-Instituts für Quantenoptik (MPQ) und der Ludwig-Maximilians-Universität (LMU) München zusammen mit Kollegen aus Japan und den USA mit Hilfe von laserinduzierter Elektronenbeugung beobachten.

Ein besonders gut erforschtes Kohlenstoffmolekül ist C₆₀, bestehend aus 60 Kohlenstoffatomen. Die Anordnung der Atome erinnert an einen Fußball. Das Makromolekül hat den Beinamen Buckminster-Fulleren (auf Englisch: Buckyball), was zu Ehren des Architekten Richard Buckminster Fuller geschah, der auf ähnliche Weise Gebäude konstruierte.

Auf solche Buckyballs ließen die Laserphysiker infrarote Femtosekunden Laserpulse auftreffen (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde). Unter dem Einfluss des starken Lichts veränderten die kugelartigen Makromoleküle ihre Form: Sie wurden in die Länge gezogen.

Die Beobachtung dieses Phänomens gelang den Physikern durch einen Trick: Der Infrarot-Laserpuls löste bei maximaler Stärke ein Elektron aus dem Molekül aus.

Das Elektron wurde im intensiven Laserfeld innerhalb weniger Femtosekunden zunächst vom Molekül weg, dann wieder in seine Richtung beschleunigt, da es durch das oszillierende elektromagnetische Feld der Lichtwelle noch einmal seine Flugrichtung änderte (siehe Abbildung).

Schließlich streute es an dem Molekül und verließ es komplett. Die Bilder dieser so gebeugten Elektronen gaben den Forschern Aufschluss über die im Lichtfeld verzerrte Struktur.

Fullerene, deren Entdeckung im Jahr 1996 mit dem Nobelpreis für Chemie ausgezeichnet wurde, sind stabil, biokompatibel und verfügen über bemerkenswerte physikalische, chemische und elektronische Eigenschaften.

„Das tiefere Verständnis der Wechselwirkung von Fullerenen mit ultrakurzem, intensivem Licht kann neue Anwendungen in ultraschneller, lichtgesteuerter Elektronik ermöglichen, die um viele Größenordnungen schneller wäre, als herkömmliche Elektronik“, erklärt Matthias Kling, Professor an der Ludwig-Maximilians-Universität und Leiter der Arbeitsgruppe im Team des Labors für Attosekundenphysik (LAP).

Die Methode der Vermessung der Strukturänderung des Kohlenstoffmoleküls wurde bisher nur an kleineren Systemen demonstriert und kam erstmals an einem Makromolekül zum Einsatz. „Die Abbildung der nur einige zehn Femtosekunden anhaltenden Verformung des Buckyballs ist ein wichtiger Fortschritt für die laserinduzierte Elektronenbeugung.

Sie bereitet den Weg für die Aufnahme molekularer Filme an komplexen (Bio)-Molekülen“, ergänzt Kling. Im nächsten Schritt wollen die Laserphysiker Filme über einen längeren Zeitraum anfertigen und so die Aktivität von Fullerenen noch detaillierter erkunden. (TN)

Wissenschaftliche Ansprechpartner:

Prof. Dr. Matthias Kling
Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Telefon: +49 89 32905 234
E-Mail: matthias.kling@mpq.mpg.de

Originalpublikation:

Harald Fuest, Yu Hang Lai, Cosmin I. Blaga, Kazuma Suzuki, Junliang Xu, Philipp Rupp, Hui Li, Pawel Wnuk, Pierre Agostini, Kaoru Yamazaki, Manabu Kanno, Hirohiko Kono, Matthias F. Kling, and Louis F. DiMauro;
Diffractive Imaging of C60 Structural Deformations Induced by Intense Femtosecond Midinfrared Laser Fields
Phys. Rev. Lett. 122, 053002 – 6 February 2019
DOI: 10.1103/PhysRevLett.122.053002

Weitere Informationen:

http://www.mpq.mpg.de

Jessica Gruber | Max-Planck-Institut für Quantenoptik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics