Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Und wieder schrumpft das Proton!

06.10.2017

Wissenschaftler am Max-Planck-Institut für Quantenoptik bestätigen mit hochpräziser Laserspektroskopie an regulärem Wasserstoff den unerwartet kleinen Protonenradius von myonischem Wasserstoff.

Es war eine der Sensationen des Jahres 2010: Laserspektroskopie an myonischem Wasserstoff ergab für den Ladungsradius des Protons einen Wert, der signifikant, nämlich um vier Standardabweichungen, kleiner war als der aus bisherigen Messungen an gewöhnlichem Wasserstoff ermittelte Wert. Seither wird über die Ursachen dieser Diskrepanz gerätselt, selbst Erweiterungen des sogenannten Standardmodells der Physik sind im Gespräch.


Dieses Foto zeigt den Vakuumapparat, der zur Messung der 2S-4P-Übergangsfrequenz in atomarem Wasserstoff genutzt wurde. Das violette Leuchten im Hintergrund stammt aus der Mikrowellenentladung, die Wasserstoff-Moleküle in Wasserstoff-Atome dissoziiert. Das blaue Licht im Vordergrund ist Fluoreszenz vom ultravioletten Laser, der die Atome in den 2S-Zustand anregt. Das türkisfarbene Leuchten ist Streulicht von dem Lasersystem, das zur Frequenzmessung des 2S-4P-Übergangs dient. (Foto: MPQ)

Doch nun hat ein Team aus der Abteilung Laserspektroskopie von Prof. Theodor W. Hänsch am Max-Planck-Institut für Quantenoptik in Garching eine neue spektroskopische Messung an gewöhnlichem Wasserstoff vorgenommen.

Die daraus abgeleiteten Werte für die Rydbergkonstante und den Protonenradius stimmen sehr gut mit den Messungen an myonischem Wasserstoff überein (Nature 466, 213 (2010)), liegen aber 3,3 Standardabweichungen unter dem Mittel der bisherigen spektroskopischen Messungen an regulärem Wasserstoff.

Wasserstoff ist das einfachste aller chemischen Elemente. Nach dem 1913 von Niels Bohr vorgeschlagenen Modell besteht es aus einem einzigen Proton und einem darum kreisenden Elektron. Für die Energieniveaus dieses Systems liefert die Quantenelektrodynamik Vorhersagen, die mittlerweile auf 12 Dezimalstellen genau sind. Wasserstoff spielt deshalb eine Schlüsselrolle für unser Verständnis von der Natur. Aus seiner Untersuchung lassen sich fundamentale Größen wie die Rydberg-Konstante und der Ladungsradius des Protons bestimmen.

Wasserstoff ist also das ideale Testobjekt, um die Naturgesetze zu überprüfen. Deshalb erregten 2010 Messungen an myonischem Wasserstoff, die einen unerwartet kleinen Protonenradius ergaben, höchste Aufmerksamkeit. Bei diesen am Paul Scherrer-Institut im schweizerischen Villigen realisierten Experimenten wird das Elektron im Wasserstoffatom durch sein Geschwisterteilchen, das 200-mal schwerere und kurzlebige Myon, ersetzt. Laserspektroskopie an diesem myonischem Wasserstoff ergab einen um 4 Prozent kleineren Protonenradius als frühere Messungen an gewöhnlichem Wasserstoff, und dies mit einer für eine Einzelmessung extrem hohen Genauigkeit.

„Da das Myon 200-mal schwerer ist als das Elektron, kommt es dem Proton viel näher und ‚spürt‘ buchstäblich dessen Ausdehnung“, erklärt Prof. Randolf Pohl (jetzt Johannes Gutenberg-Universität Mainz), der von MPQ-Seite aus maßgeblich an der Messung beteiligt war. „Der Protonenradius hat deswegen einen um sieben Größenordnungen stärkeren Einfluss auf die Spektrallinien als in regulärem Wasserstoff. Daraus ergibt sich die hohe Präzision, mit der wir den Protonenradius bestimmen konnten.“

Die hohe Diskrepanz zwischen den Messungen an regulärem Wasserstoff und seiner exotischen Variante gab Anlass zu zahlreichen Debatten über die möglichen Ursachen. „Allerdings stimmen einige der bisherigen Messungen durchaus mit dem myonischen Wert überein. Denn der Einfluss des Protonenradius auf die Energieniveaus in regulärem Wasserstoff ist sehr klein und selbst mit sehr hoher Messpräzision kaum sichtbar. Die Diskrepanz wird erst dann signifikant, wenn alle Messungen gemittelt werden.“, erklärt Lothar Maisenbacher, Doktorand am Experiment.

„Deshalb ist es für die Auflösung des ‚Proton-Rätsels‘ besonders wichtig, einzelne neue Messungen mit hoher Genauigkeit und, soweit möglich, anderen experimentellen Ansätzen durchzuführen.“

Um sowohl Rydberg-Konstante und als auch Protonenradius nur durch Spektroskopie an regulärem Wasserstoff zu bestimmen, müssen zwei verschiedene Übergangsfrequenzen gemessen werden. Als Eckpfeiler dient dabei die mit Abstand schärfste Resonanz, der sogennante 1S-2S-Übergang, dessen Frequenz vom MPQ-Team 2011 mit Laserspektroskopie auf 15 Dezimalstellen genau gemessen wurde (Phys. Rev. Lett. 107, 203001 (2011)). Diese hohe Genauigkeit wurde nicht zuletzt durch die Entwicklung des Frequenzkamms möglich, für den Prof. Hänsch 2005 den Physik-Nobelpreis erhielt. Als zweiten Übergang wählte das MPQ-Team den sogenannten 2S-4P-Übergang, der vom metastabilen 2S-Zustand in den deutlich kurzlebigeren 4P-Zustand führt.

Im Experiment wird dieser Übergang von einem Laser mit einer Wellenlänge von 486 nm angeregt und die beim Zerfall des 4P-Zustand entstehende Fluoreszenz wird als Signal detektiert. Der zuvor zur 1S-2S-Messung genutzte Apparat dient als Quelle für Wasserstoffatome im 2S-Zustand. Im Vergleich zu vorherigen Messungen, die bei Raumtemperatur arbeiteten, haben die spektroskopisch untersuchten Atome dadurch eine deutlich niedrigere Temperatur von 5,8 Kelvin und damit auch eine deutlich niedrigere Geschwindigkeit. Zusammen mit weiteren eigens entwickelten Techniken kann somit der Dopplereffekt, die größte Fehlerquelle für die Messung, stark unterdrückt werden.

„Eine weitere Fehlerquelle bei diesem Experiment ist die sogenannte Quanteninterferenz“, erklärt Lothar Maisenbacher. „Könnten wir einen einzelnen, isolierten Übergang anregen, wäre die natürliche Form der Spektrallinie symmetrisch. Allerdings gibt es in unserem Fall zwei vom Laser angeregte obere Zustände, nämlich 4P 1/2 und 4P 3/2. Dadurch werden die Spektrallinien leicht asymmetrisch, und die Bestimmung der Linienmitte schwieriger. Der Effekt ist zwar sehr klein, spielt aber angesichts der erreichten Genauigkeit von fast einem Zehntausendstel der Linienbreite eine große Rolle.“

Um den Einfluss der Quanteninterferenz zu beschreiben, führen die Wissenschaftler detaillierte Simulationen durch, die sehr gut mit den experimentellen Ergebnissen übereinstimmen. „In unserem Fall reicht aber auch schon eine speziell hierfür hergeleitete, einfache Fitfunktion, um den Effekt der Quanteninterferenz entfernen zu können“, betont Vitaly Andreev, ebenfalls Doktorand am Experiment. „Diese Fitfunktion benutzen wir auch zur Datenauswertung. Wir müssen hier nur noch in Form kleiner Korrekturen von der Größenordnung ~1 kHz auf die Simulation zurückgreifen.“

Damit schafft es das MPQ-Team die Frequenz des 2S-4P-Übergangs in Wasserstoff auf 2.3 kHz genau zu bestimmen. Dies entspricht einer relativen Messungenauigkeit von 4 x 10 hoch minus 12 und stellt die zweitgenaueste Spektroskopiemessung nach der zuvor genannten Messung des 1S-2S-Übergangs dar. Aus der Kombination dieser beiden Ergebnisse bestimmen sich die Werte für die Rydberg-Konstante und den Protonenradius zu R∞ = 10973731.568076(96) m hoch minus 1 und rp = 0.8335(95) fm.
„Unsere Messung ist fast so genau wie alle anderen bisherigen Experimente an regulärem Wasserstoff zusammengenommen“, resümiert Prof. Thomas Udem, Leiter des Projekts. „Wir erhalten eine gute Übereinstimmung mit den Werten für myonischen Wasserstoff, aber einen Unterschied von 3,3 Standardabweichungen zu den Wasserstoff-Weltdaten, sowohl für die Rydberg-Konstante als auch für den Protonenradius. Um die Ursachen für diese Diskrepanzen umfassend erklären zu können, benötigen wir weitere Messungen mit vielleicht noch höherer Genauigkeit. Denn man sollte nicht vergessen, dass viele neue Entdeckungen anfangs nur als Diskrepanz in Erscheinung traten.“ Olivia Meyer-Streng

Bildbeschreibung:
Dieses Foto zeigt den Vakuumapparat, der zur Messung der 2S-4P-Übergangsfrequenz in atomarem Wasserstoff genutzt wurde. Das violette Leuchten im Hintergrund stammt aus der Mikrowellenentladung, die Wasserstoff-Moleküle in Wasserstoff-Atome dissoziiert. Das blaue Licht im Vordergrund ist Fluoreszenz vom ultravioletten Laser, der die Atome in den 2S-Zustand anregt. Das türkisfarbene Leuchten ist Streulicht von dem Lasersystem, das zur Frequenzmessung des 2S-4P-Übergangs dient. (Foto: MPQ)

Originalveröffentlichung:
Axel Beyer, Lothar Maisenbacher, Arthur Matveev, Randolf Pohl, Ksenia Khabarova,
Alexey Grinin, Tobias Lamour, Dylan C. Yost, Theodor W. Hänsch, Nikolai Kolachevsky, Thomas Udem
The Rydberg constant and proton size from atomic hydrogen
Science, 6. Oktober 2017

Kontakt:

Lothar Maisenbacher
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 295
E-Mail: lothar.maisenbacher@mpq.mpg.de

Prof. Dr. Thomas Udem
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 282
E-Mail: thomas.udem@mpq.mpg.de

Prof. Dr. Theodor W. Hänsch
Lehrstuhl für Experimentalphysik
Ludwig-Maximilians-Universität, München
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 702 /-712
E-Mail: t.w.haensch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
80748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht TU Dortmund erstellt hochgenaues 3D-Modell vom Rover-Landeplatz auf dem Mars
18.09.2019 | Technische Universität Dortmund

nachricht Rostock Scientists Achieve Breakthrough in Quantum Physics
18.09.2019 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modulare OLED-Leuchtstreifen

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP, ein Anbieter von Forschung und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik, stellt auf dem International Symposium on Automotive Lighting 2019 (ISAL), vom 23. bis 25. September 2019, in Darmstadt, am Stand Nr. 37 erstmals OLED-Leuchtstreifen beliebiger Länge mit Zusatzfunktionalitäten vor.

Leuchtstreifen für das Innenraumdesign kennt inzwischen nahezu jeder. LED-Streifen sind als Meterware im Baumarkt um die Ecke erhältlich und ebenso oft als...

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Womit werden wir morgen kühlen?

Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung

Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Woher kommt der Nordsee-Plastikmüll

18.09.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - November 2019

18.09.2019 | Veranstaltungen

Sichere Schnittstellen: API-Security

18.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

TU Dortmund erstellt hochgenaues 3D-Modell vom Rover-Landeplatz auf dem Mars

18.09.2019 | Physik Astronomie

HEIDENHAIN auf der interlift 2019: Messgeräte für den Aufzug der Zukunft

18.09.2019 | Messenachrichten

Innovation durch Automatisierung - wie können technologische Prozesse optimiert werden?

18.09.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics