Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumult im trägen Elektronen-Dasein

23.05.2017

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds. Es herrscht also relative Ruhe im dielektrischen Kristallgitter.


Ein Team von Physikern hat die Zeit gemessen, die Elektronen benötigen, um nach ihrer Anregung durch ultraviolettes Licht ein Dielektrikum zu verlassen. Die Messung (dargestellt in Falschfarben) war die erste ihrer Art in einem Dielektrikum und hat eine Zeitdauer von 150 Attosekunden (as) ergeben. Aus dieser Zeit konnten die Physiker bestimmen, dass unelastische Streuung im Dielektrikum im Mittel ca. 370 as dauert.

Dennis Luck, Thorsten Naeser

Dieses Idyll haben nun Physiker vom Labor für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität München (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) in einer Teamarbeit mit Wissenschaftlern vom Institut für Photonik und Nanotechnologien (IFN-CNR) in Mailand, dem Institut für Physik der Universität Rostock, dem Max-Born-Institut (MBI) in Berlin, sowie dem Center for Free-Electron Laser Science (CFEL) in Hamburg und der Universität Hamburg erheblich durcheinander gewirbelt.

Zum ersten Mal haben es die Forscher damit geschafft, die Interaktion zwischen Licht und Elektronen in einem Dielektrikum, also einem nichtleitenden Material, auf Zeitskalen von Attosekunden (Milliardstel von milliardstel Sekunden) zu verfolgen.

Die Forscher schickten auf ein rund 50 Nanometer dickes Glasteilchen Lichtblitze, die nur wenige hundert Attosekunden dauerten und Elektronen in dem Glas freisetzten. Gleichzeitig strahlten die Forscher ein intensives Lichtfeld auf die Glasteilchen, das nur wenige Femtosekunden (Millionstel von milliardstel Sekunden) wirkte und die freigesetzten Elektronen in Schwingungen versetzte. Grundsätzlich konnte es in der Folge zu zwei unterschiedlichen Reaktionen der Elektronen kommen.

Zuerst setzen sie sich in Bewegung, dann stoßen sie mit den Atomen aus dem Teilchen entweder elastisch oder unelastisch zusammen. Zwischen jeder Wechselwirkung konnten sich die Elektronen aufgrund des dichten Kristallgitters nur wenige Ångström (10 hoch minus 10 Meter) frei bewegen.

„Bei einem elastischen Stoß bleibt wie beim Billard die Energie des Elektrons erhalten, nur die Richtung kann sich ändern. Bei einem unelastischen Stoß werden die Atome angeregt und ein Teil der Energie der Elektronen geht verloren. Für das Experiment bedeutete dies einen Rückgang des Elektronensignals, den wir messen konnten“, beschreibt Prof. Francesca Calegari (CNR-IFN Mailand und CFEL/Universität Hamburg) die Experimente.

Da es dem Zufall überlassen ist, ob eine Interaktion elastisch oder unelastisch erfolgt, werden mit der Zeit zwangsläufig unelastische Interaktionen stattfinden und die Anzahl rein elastisch gestreuter Elektronen abnehmen. Durch genaue Messung der Schwingung der Elektronen in dem starken Lichtfeld gelang es den Forschern herauszufinden, dass es im Mittel ca. 150 Attosekunden dauerte, bis elastisch stoßende Elektronen das Nanoteilchen verlassen hatten.

„Aus der gemessenen Zeitverzögerung konnten wir mittels unserer neu entwickelten Theorie eine unelastische Stoßzeit von etwa 370 Attosekunden für die Elektronen bestimmen und damit erstmals diesen Prozess in einem Dielektrikum zeitlich vermessen“, beschreibt Prof. Thomas Fennel von der Universität Rostock und dem Max-Born Institut in Berlin die Analyse der Messdaten.

Die Erkenntnisse der Forscher könnten nun medizinischen Anwendungen zu Gute kommen. Denn mit diesen weltweit ersten Ultrakurzzeit-Beobachtungen von Elektronenbewegungen in einem nichtleitenden Material haben die Forscher wichtige Erkenntnisse über die Wirkung von Strahlung in einem Körper erlangt, der dem menschlichen Gewebe in seinen dielektrischen Eigenschaften ähnlich ist. In den Experimenten ist die Energie der angeregten Elektronen über das Licht steuerbar und somit kann dieser Prozess für einen breiten Energiebereich und für verschiedene Dielektrika untersucht werden.

„Bei jeder Einwirkung hochenergetischer Strahlung auf Gewebe werden Elektronen erzeugt, die wiederum durch unelastische Stöße Energie auf die Atome und Moleküle des Gewebes übertragen, wodurch dieses zerstört werden kann. Genaue Kenntnisse über die Elektronenstreuung sind daher für die Bekämpfung von Tumoren wichtig. Hiermit lassen sich durch Computersimulationen Behandlungen so optimieren, dass ein Tumor zerstört wird, gesundes Gewebe aber möglichst verschont bleibt“, beschreibt Prof. Matthias Kling die Bedeutung der Arbeiten. Im nächsten Schritt wollen die Wissenschaftler in den Experimenten die Glas-Nanoteilchen durch Wassertropfen ersetzen, um das Wechselspiel zwischen Elektronen und dem Stoff, aus dem lebendes Gewebe größtenteils besteht, genauer zu untersuchen. Thorsten Naeser

Bildbeschreibung:
Ein Team von Physikern hat die Zeit gemessen, die Elektronen benötigen, um nach ihrer Anregung durch ultraviolettes Licht ein Dielektrikum zu verlassen. Die Messung (dargestellt in Falschfarben) war die erste ihrer Art in einem Dielektrikum und hat eine Zeitdauer von 150 Attosekunden (as) ergeben. Aus dieser Zeit konnten die Physiker bestimmen, dass unelastische Streuung im Dielektrikum im Mittel ca. 370 as dauert.

Originalveröffentlichung:
L. Seiffert, Q. Liu, S. Zherebtsov, A. Trabattoni, P. Rupp, M. C. Castrovilli, M. Galli, F. Süßmann, K. Wintersperger, J. Stierle, G. Sansone, L. Poletto, F. Frassetto, I. Halfpap, V. Mondes, C. Graf, E. Rühl, F. Krausz, M. Nisoli, T. Fennel, F. Calegari, M. F. Kling
Attosecond Chronoscopy of Electron Scattering in Dielectric Nanoparticles
Nature Physics, 22. Mai 2017, DOI 10.1038/nphys4129

Kontakt:

Prof. Dr. Matthias Kling
Ultraschnelle Nanophotonik
Labor für Attosekundenphysik
Abteilung für Physik, Ludwig-Maximilians-Universität München und
Max-Planck-Institut für Quantenoptik
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 234
E-Mail: matthias.kling@mpq.mpg.de

Prof. Dr. Thomas Fennel
Theoretische Clusterphysik und Nanophotonik
Max-Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin und
Institut für Physik, Universität Rostock
Albert-Einstein-Str. 23, 18059 Rostock
Telefon: +49 (0)381 / 49 86 815
E-Mail: thomas.fennel@uni-rostock.de

Prof. Dr. Francesca Calegari
Attosecond Science Group, FS-ATTO
Institute for Photonics and Nanotechnologies IFN-CNR (Milano)
Abt. für Physik, Universität Hamburg und
Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607 Hamburg
Telefon: +49 (0)40 / 89 98 - 6369
E-Mail: francesca.calegari@desy.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Für Körperscanner und Materialprüfung: Neues bildgebendes Verfahren für Terahertz-Strahlung setzt auf Mikrospiegel
06.12.2019 | Technische Universität Kaiserslautern

nachricht Schweizer Weltraumteleskop CHEOPS: Raketenstart voraussichtlich am 17. Dezember 2019
05.12.2019 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: Freiformflächen bis zu 80 Prozent schneller schlichten: Neue Werkzeuge und Algorithmen für die Fräsbearbeitung

Beim Schlichtfräsen komplexer Freiformflächen können Kreissegment- oder Tonnenfräswerkzeuge jetzt ihre Vorteile gegenüber herkömmlichen Werkzeugen mit Kugelkopf besser ausspielen: Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen entwickelte im Forschungsprojekt »FlexiMILL« gemeinsam mit vier Industriepartnern passende flexible Bearbeitungsstrategien und implementierte diese in eine CAM-Software. Auf diese Weise lassen sich große frei geformte Oberflächen nun bis zu 80 Prozent schneller bearbeiten.

Ziel im Projekt »FlexiMILL« war es, für die Bearbeitung mit Tonnenfräswerkzeugen nicht nur neue, verbesserte Werkzeuggeometrien zu entwickeln, sondern auch...

Im Focus: Bis zu 30 Prozent mehr Kapazität für Lithium-Ionen-Akkus

Durch Untersuchungen struktureller Veränderungen während der Synthese von Kathodenmaterialen für zukünftige Hochenergie-Lithium-Ionen-Akkus haben Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und kooperierender Einrichtungen neue und wesentliche Erkenntnisse über Degradationsmechanismen gewonnen. Diese könnten zur Entwicklung von Akkus mit deutlich erhöhter Kapazität beitragen, die etwa bei Elektrofahrzeugen eine größere Reichweite möglich machen. Über die Ergebnisse berichtet das Team in der Zeitschrift Nature Communications. (DOI 10.1038/s41467-019-13240-z)

Ein Durchbruch der Elektromobilität wird bislang unter anderem durch ungenügende Reichweiten der Fahrzeuge behindert. Helfen könnten Lithium-Ionen-Akkus mit...

Im Focus: Neue Klimadaten dank kompaktem Alexandritlaser

Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter. Bereiche oberhalb von 40 km sind allerdings nur mit Höhenforschungsraketen direkt zugänglich. Ein LIDAR-System (Light Detection and Ranging) mit einem diodengepumpten Alexandritlaser schafft jetzt neue Möglichkeiten. Wissenschaftler des Leibniz-Instituts für Atmosphärenphysik (IAP) und des Fraunhofer-Instituts für Lasertechnik ILT entwickeln ein System, das leicht zu transportieren ist und autark arbeitet. Damit kann in Zukunft ein LIDAR-Netzwerk kontinuierlich und weiträumig Daten aus der Atmosphäre liefern.

Der Klimawandel ist in diesen Tagen ein heißes Thema. Eine wichtige wissenschaftliche Grundlage zum Verständnis der Phänomene sind valide Modelle zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

Intelligente Transportbehälter als Basis für neue Services der Intralogistik

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

RNA-Modifikation - Umbau unter Druck

06.12.2019 | Biowissenschaften Chemie

Der Versteppung vorbeugen

06.12.2019 | Geowissenschaften

Verstopfung in Abwehrzellen löst Entzündung aus

06.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics