Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumult im trägen Elektronen-Dasein

23.05.2017

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds. Es herrscht also relative Ruhe im dielektrischen Kristallgitter.


Ein Team von Physikern hat die Zeit gemessen, die Elektronen benötigen, um nach ihrer Anregung durch ultraviolettes Licht ein Dielektrikum zu verlassen. Die Messung (dargestellt in Falschfarben) war die erste ihrer Art in einem Dielektrikum und hat eine Zeitdauer von 150 Attosekunden (as) ergeben. Aus dieser Zeit konnten die Physiker bestimmen, dass unelastische Streuung im Dielektrikum im Mittel ca. 370 as dauert.

Dennis Luck, Thorsten Naeser

Dieses Idyll haben nun Physiker vom Labor für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität München (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) in einer Teamarbeit mit Wissenschaftlern vom Institut für Photonik und Nanotechnologien (IFN-CNR) in Mailand, dem Institut für Physik der Universität Rostock, dem Max-Born-Institut (MBI) in Berlin, sowie dem Center for Free-Electron Laser Science (CFEL) in Hamburg und der Universität Hamburg erheblich durcheinander gewirbelt.

Zum ersten Mal haben es die Forscher damit geschafft, die Interaktion zwischen Licht und Elektronen in einem Dielektrikum, also einem nichtleitenden Material, auf Zeitskalen von Attosekunden (Milliardstel von milliardstel Sekunden) zu verfolgen.

Die Forscher schickten auf ein rund 50 Nanometer dickes Glasteilchen Lichtblitze, die nur wenige hundert Attosekunden dauerten und Elektronen in dem Glas freisetzten. Gleichzeitig strahlten die Forscher ein intensives Lichtfeld auf die Glasteilchen, das nur wenige Femtosekunden (Millionstel von milliardstel Sekunden) wirkte und die freigesetzten Elektronen in Schwingungen versetzte. Grundsätzlich konnte es in der Folge zu zwei unterschiedlichen Reaktionen der Elektronen kommen.

Zuerst setzen sie sich in Bewegung, dann stoßen sie mit den Atomen aus dem Teilchen entweder elastisch oder unelastisch zusammen. Zwischen jeder Wechselwirkung konnten sich die Elektronen aufgrund des dichten Kristallgitters nur wenige Ångström (10 hoch minus 10 Meter) frei bewegen.

„Bei einem elastischen Stoß bleibt wie beim Billard die Energie des Elektrons erhalten, nur die Richtung kann sich ändern. Bei einem unelastischen Stoß werden die Atome angeregt und ein Teil der Energie der Elektronen geht verloren. Für das Experiment bedeutete dies einen Rückgang des Elektronensignals, den wir messen konnten“, beschreibt Prof. Francesca Calegari (CNR-IFN Mailand und CFEL/Universität Hamburg) die Experimente.

Da es dem Zufall überlassen ist, ob eine Interaktion elastisch oder unelastisch erfolgt, werden mit der Zeit zwangsläufig unelastische Interaktionen stattfinden und die Anzahl rein elastisch gestreuter Elektronen abnehmen. Durch genaue Messung der Schwingung der Elektronen in dem starken Lichtfeld gelang es den Forschern herauszufinden, dass es im Mittel ca. 150 Attosekunden dauerte, bis elastisch stoßende Elektronen das Nanoteilchen verlassen hatten.

„Aus der gemessenen Zeitverzögerung konnten wir mittels unserer neu entwickelten Theorie eine unelastische Stoßzeit von etwa 370 Attosekunden für die Elektronen bestimmen und damit erstmals diesen Prozess in einem Dielektrikum zeitlich vermessen“, beschreibt Prof. Thomas Fennel von der Universität Rostock und dem Max-Born Institut in Berlin die Analyse der Messdaten.

Die Erkenntnisse der Forscher könnten nun medizinischen Anwendungen zu Gute kommen. Denn mit diesen weltweit ersten Ultrakurzzeit-Beobachtungen von Elektronenbewegungen in einem nichtleitenden Material haben die Forscher wichtige Erkenntnisse über die Wirkung von Strahlung in einem Körper erlangt, der dem menschlichen Gewebe in seinen dielektrischen Eigenschaften ähnlich ist. In den Experimenten ist die Energie der angeregten Elektronen über das Licht steuerbar und somit kann dieser Prozess für einen breiten Energiebereich und für verschiedene Dielektrika untersucht werden.

„Bei jeder Einwirkung hochenergetischer Strahlung auf Gewebe werden Elektronen erzeugt, die wiederum durch unelastische Stöße Energie auf die Atome und Moleküle des Gewebes übertragen, wodurch dieses zerstört werden kann. Genaue Kenntnisse über die Elektronenstreuung sind daher für die Bekämpfung von Tumoren wichtig. Hiermit lassen sich durch Computersimulationen Behandlungen so optimieren, dass ein Tumor zerstört wird, gesundes Gewebe aber möglichst verschont bleibt“, beschreibt Prof. Matthias Kling die Bedeutung der Arbeiten. Im nächsten Schritt wollen die Wissenschaftler in den Experimenten die Glas-Nanoteilchen durch Wassertropfen ersetzen, um das Wechselspiel zwischen Elektronen und dem Stoff, aus dem lebendes Gewebe größtenteils besteht, genauer zu untersuchen. Thorsten Naeser

Bildbeschreibung:
Ein Team von Physikern hat die Zeit gemessen, die Elektronen benötigen, um nach ihrer Anregung durch ultraviolettes Licht ein Dielektrikum zu verlassen. Die Messung (dargestellt in Falschfarben) war die erste ihrer Art in einem Dielektrikum und hat eine Zeitdauer von 150 Attosekunden (as) ergeben. Aus dieser Zeit konnten die Physiker bestimmen, dass unelastische Streuung im Dielektrikum im Mittel ca. 370 as dauert.

Originalveröffentlichung:
L. Seiffert, Q. Liu, S. Zherebtsov, A. Trabattoni, P. Rupp, M. C. Castrovilli, M. Galli, F. Süßmann, K. Wintersperger, J. Stierle, G. Sansone, L. Poletto, F. Frassetto, I. Halfpap, V. Mondes, C. Graf, E. Rühl, F. Krausz, M. Nisoli, T. Fennel, F. Calegari, M. F. Kling
Attosecond Chronoscopy of Electron Scattering in Dielectric Nanoparticles
Nature Physics, 22. Mai 2017, DOI 10.1038/nphys4129

Kontakt:

Prof. Dr. Matthias Kling
Ultraschnelle Nanophotonik
Labor für Attosekundenphysik
Abteilung für Physik, Ludwig-Maximilians-Universität München und
Max-Planck-Institut für Quantenoptik
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 234
E-Mail: matthias.kling@mpq.mpg.de

Prof. Dr. Thomas Fennel
Theoretische Clusterphysik und Nanophotonik
Max-Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin und
Institut für Physik, Universität Rostock
Albert-Einstein-Str. 23, 18059 Rostock
Telefon: +49 (0)381 / 49 86 815
E-Mail: thomas.fennel@uni-rostock.de

Prof. Dr. Francesca Calegari
Attosecond Science Group, FS-ATTO
Institute for Photonics and Nanotechnologies IFN-CNR (Milano)
Abt. für Physik, Universität Hamburg und
Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607 Hamburg
Telefon: +49 (0)40 / 89 98 - 6369
E-Mail: francesca.calegari@desy.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wieso Radium-Monofluorid den Blick ins Universum fundamental verändern kann
28.05.2020 | Universität Kassel

nachricht Verlustfreie Stromleitung an den Kanten
25.05.2020 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics