Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilchendiffusion funktioniert anders als bisher angenommen

02.11.2017

Der Physiker Peter Hänggi und seine Gruppe am Augsburger Lehrstuhl für Theoretische Physik I berichten in PNAS über die erstmals gelungene Quantifizierung hydrodynamischer Effekte beim Partikeltransport

Der Transport von Partikeln durch Ionenkanäle und Nanoporen funktioniert anders als bisher angenommen. Ein Team um den Augsburger Physiker und NIM-Wissenschaftler Prof. Dr. Dr. h. c. mult. Peter Hänggi belegt diesen Durchbruch, der zum Überdenken bisheriger Modelle zwingt, mit Simulationen und Experimenten zur Teilchendiffusion in verschiedenen Kanalmodellen.


Schematische Darstellung eines gewellten Kanals mit einem darin diffundierenden kugelförmigen Brownschen Kolloidteilchen.

© Universität Augsburg (IfP)/PNAS


Das durch die Zitterbewegung eines diffundierenden Teilchens erzeugte Strömungsfeld variiert in Abhängigkeit davon, ob das Teilchen in offener Umgebung (B) oder an einer Engstelle (C) diffundiert.

© Universität Augsburg (IfP)/PNAS

Diffusion ist allgegenwärtig. Ohne sie wären viele alltägliche Prozesse unmöglich. Vor allem für den Transport von sehr kleinen Partikeln spielt Diffusion eine zentrale Rolle.

Mit der Erforschung der Brownschen Molekularbewegungen haben Einstein, Sutherland und Smoluchowski vor gut 110 Jahren den Grundstein für alle weitere Diffusionsforschung gelegt – auch für die des Augsburger Physikers Peter Hänggi, der mit seiner Forschungsgruppe jetzt in den renommierten „Proceedings of the National Academy of Sciences“ (PNAS) über die erstmals gelungene Einbeziehung hydrodynamischer Effekte in analytische Berechnungen der sogenannten „Brownschen Zitterbewegung“ berichtet.

Der Weg durch einen Kanal

Auf verschiedensten Felder von Physik und Chemie, insbesondere in der Biophysik ist die Frage, wie der Transport kleinster Teilchen durch natürliche oder künstliche Ionenkanäle und Nanoporen funktioniert, von größtem Interesse.

All solchen Systemen ist gemeinsam, dass sie begrenzt sind, dass die entsprechenden Grenzflächen nie ganz glatt sind und dadurch auf molekularer Ebene den zick-zack Weg der Teilchen durch die Ionenkanäle oder Nanoporen, die zufällige Brownsche Zitterbewegung also, beeinflussen.

Entropische und hydrodynamische Wechselwirkungen

Da sind zum einen direkte Wechselwirkungen der Mikropartikel mit der Umgrenzung und der umgebenden Flüssigkeit, die – seien sie nun anziehender oder abstoßender Natur – die Transportgeschwindigkeit verändern.

Zum anderen steht diesen hydrodynamischen Wechselwirkungen der sehr begrenzte Platz für Bewegungen entlang der Flussrichtung gegenüber, der den Weg und die Bewegung vorgibt und damit entropische Effekte auslöst. Nur diese entropischen Effekte konnten bislang in analytische Berechnungen mit einbezogen werden, ohne allerdings als solche allein das volle System widerspiegeln zu können, weil hier die hydrodynamischen Effekte unberücksichtigt bleiben.

Letztere quantitativ zu beschreiben, galt bislang als beinahe unmöglich, da die allgegenwärtigen anziehenden und abstoßenden Wechselwirkungen bei unebenen Oberflächen extrem schwierig zu modellieren sind.

Zeit und Ort sind entscheidend

Die Betrachtung und Quantifizierung dieser hydrodynamischen Effekte sowohl in theoretischen Modellen als auch in praktischen Versuchen ist nun erstmals dem Augsburger Physiker Peter Hänggi und der Forschergruppe gelungen. Er und seine Forschergruppe am Augsburger Lehrstuhl für Theoretische Physik I konnten die mittlere Diffusionsgeschwindigkeit kugelförmiger Partikel bestimmten, indem sie diese in Wasser durch einen welligen Kanal diffundieren ließen.

Deutlich längere Diffusionszeit

Die dabei erzielten Ergebnisse zeigen, dass bisherige Modelle neu überdacht werden müssen. „Wir konnten zwar“, so Hänggi, „die entropische Theorie für Kanäle, deren Durchmesser deutlich größer ist als der der Partikel, bestätigen, zugleich aber die bisherigen Simulationen für enge Kanäle widerlegen. Denn hier hat der hydrodynamische Effekt entscheidenden Einfluss auf die Transportgeschwindigkeit von Teilchen.

Es kann zu einer mittleren Diffusionszeit kommen, die etwa 40 Prozent länger ist als diejenige, die auf Grundlage der entropischen Theorie vorhergesagt wird. Wenn man allerdings als Maß für die Beweglichkeit der Teilchen den Stokes-Einsteinschen Diffusionskoeffizienten ersetzt durch einen experimentell bestimmten und kompliziert ortsabhängigen Diffusionskoeffizienten, der die komplexen hydrodynamischen Wechselwirkungen der unebenen Oberfläche berücksichtigt, dann lässt sich die entropische Theorie erstaunlicherweise in guter Übereinstimmung mit diesen experimentellen Daten auf enge Kanäle anwenden.“


Publikation:

Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels.
Yang X, Liu C, Li Y, Marchesoni F, Hänggi P, Zhang HP.
PNAS 2017 Sep 5;114(36):9564-9569. DOI: 10.1073/pnas.1707815114
http://www.pnas.org/content/114/36/9564.abstract


Kontakt:
Prof. Dr. Dr. h. c. mult. Peter Hänggi
Lehrstuhl für Theoretische Physik I
Institut für Physik der Universität Augsburg
86135 Augsburg
Telefon: +49(0)821-598-3250
Hanggi@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/theo1/hanggi/

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics