Die Vermessung des Unmessbaren

Einteilung von Arabidopsis-Blattepidermis-Zellen in klein, mittelgroß und groß; jeweils 3, 5 und 7 Tage nach der Keimung (Days after Germination, DAG) durch PaCeQuant. Foto: Katharina Bürstenbinder, IPB

Wie vermisst man die Welt, die nicht messbar ist? Vor dieser Frage und Herausforderung stand Katharina Bürstenbinder vom Leibniz-Institut für Pflanzenbiochemie vor etwa zwei Jahren im Rahmen ihrer Forschungsarbeiten. Die promovierte Biologin untersucht Proteine, die den Auf- und Abbau des Zytoskeletts beeinflussen.

Das Zytoskelett durchzieht wie ein Netz aus inneren Halteseilen jede Zelle und bestimmt somit deren Größe, Form und Stabilität. Wächst die Zelle in die Länge, verändert sich vorher ihr Zytoskelett. Auf der Suche nach Faktoren, die das feine Zusammenspiel von Zellwachstum und Zellformung regulieren, analysierten die Hallenser Wissenschaftler Blattepidermis-Zellen der Ackerschmalwand Arabidopsis thaliana.

Dabei konnten sie verschiedene Mutanten herstellen, bei denen das Zytoskelett und damit die Form der Blattepidermis-Zellen verändert war. Während die Wildtypzellen ihre typische unregelmäßige Puzzleteilchen-Form aufwiesen, waren die Mutantenzellen lang gestreckter und mit weniger Aus- und Einbuchtungen versehen.

Bei einigen Mutantenpflanzen war dieser Unterschied in der Zellform sehr klar erkennbar; bei anderen wiederum nicht. Deren Blattepidermis-Zellen wirkten irgendwie anders – aber waren sie das auch? War bei diesen Zellen in der Tat die Anzahl und Größe der Ausbuchtungen verändert oder war das nur ein subjektiver Eindruck?

Ist die Ausstülpung einer Zelle überhaupt mathematisch klar definiert? – fragte sich daraufhin Bürstenbinder. Gibt es Methoden, mit denen man Zellform und -fläche, die Art und Anzahl der Ausstülpungen und Einbuchtungen exakt bestimmen kann? Eine Suche in der Literatur brachte wenig Ergebnisse: „Hier klafft eine große Methoden-Lücke“, fasst Bürstenbinder zusammen. „Bei allen bisher verwendeten Verfahren zur räumlichen Vermessung von Zellen spielt menschliches Ermessen eine große Rolle. Der Mensch aber kann sich irren.“

Bis heute untersuchen Forscher komplizierte Zellformen, indem sie sie einzeln am computervernetzten Mikroskop begutachten. Die Ränder der Zellen werden mühsam per Hand nachgezeichnet; Ausstülpungen und Einbuchtungen werden händisch definiert. „Je nach gewählter Auflösung übersieht man kleinere Ausbuchtungen schnell“, konstatiert die Hallenser Wissenschaftlerin. Am Ende führt ein Bildanalyseprogramm alle erhobenen Daten zusammen. Für statistisch relevante Ergebnisse müssen mehrere hundert Zellen derart unter die Lupe genommen werden. Das Verfahren kostet – trotz Computerhilfe – sehr viel Zeit und ist zudem mit Ungenauigkeiten und Subjektivität behaftet.

Subjektives Empfinden, wie etwas wirkt, steht natürlich den wissenschaftlichen Prinzipien nach Mess- und Reproduzierbarkeit diametral entgegen. Gegebenheiten, die man nicht mit Zahlen erfassen kann, sind schlecht miteinander vergleichbar. Also entwickelte Bürstenbinder gemeinsam mit Birgit Möller und Yvonne Pöschl das Epidermiszellen-Quantifizierungsprogramm PaCeQuant. Pöschl und Möller trugen als Informatikerinnen der Hallenser Universität mit ihrer Expertise erheblich zum Gelingen des Projektes bei.

Für die Entwicklung von PaCeQuant haben die Wissenschaftlerinnen 27 verschiedene Parameter festgelegt, die die Form einer Zelle bestimmen und berechenbar machen. Diese Parameter, wie Zellumfang, Anzahl und Größe der Ausstülpungen, Zellfläche mit und ohne Ausstülpungen werden von PaCeQuant anhand von definierten Messpunkten automatisch erkannt und berechnet. Zudem kann das Programm die Daten von mehreren hundert Zellen simultan erfassen und auswerten.

Die Probe auf’s Exempel war spannend: „Wir haben dann die gleichen Zellen jeweils von PaCeQuant und von verschiedenen externen Personen auf herkömmliche Weise vermessen lassen.“ Die Schwankungen beim herkömmlichen Verfahren betrugen bis zu 40 Prozent. Während das Programm für eine Zelle beispielsweise 20 Ausstülpungen berechnet hatte, kamen die menschlichen Experimentatoren auf Zahlen zwischen 12 und 28. „Diese Unterschiede sind nicht nur vom jeweiligen Vermesser abhängig, sondern sogar von dessen Tagesform“, weiß Bürstenbinder.

Die Anwendungsmöglichkeiten von PaCeQuant sind vielfältig. Veränderte Zellformen von verschiedenen Mutantenzellen können jetzt automatisiert und objektiv voneinander und auch von den Wildtypzellformen abgegrenzt werden. Darüber hinaus erkennt das Programm altersbedingte Unterschiede in der Zellform. Nach vorgegebenen Parametern kann es die Zellen in klein, mittelgroß oder groß einteilen. Es erfasst damit die Anzahl und Verteilung von Zellen in unterschiedlichen Entwicklungsstadien. Pflanzenphysiologen können jetzt verschiedene Wachstumsstadien der Pflanze noch feingliedriger einteilen und schärfer voneinander abgrenzen. Zudem kann das Programm auf die Vermessung anderer Zelltypen in anderen Organismen angepasst werden. So wäre beispielsweise die automatische Erkennung von entarteten Zellen in der Krebsdiagnostik mit PaCeQuant denkbar.

Katharina Bürstenbinder hofft, dass das Programm zunächst von möglichst vielen Pflanzenwissenschaftlern genutzt wird. „Gerade wenn verschiedene Arbeitsgruppen am gleichen Zelltyp arbeiten, entsprächen die Bildanalysen mit PaCeQuant einem einheitlichen Standard und können so viel besser miteinander verglichen und diskutiert werden.“ Erste Interessenten gibt es bereits. Mit ihnen wurden erste Optimierungen für eine Anpassung von PaCeQuant auf andere Zelltypen vorgenommen. Die Vorteile des OpenSource-Programmes zeigen sich bereits jetzt: Wissenschaftler aus aller Welt können das Programm gemeinsam und sehr dynamisch an ihre jeweiligen Fragestellungen und Bedürfnisse anpassen.

Originalpublikation:
Birgit Möller, Yvonne Poeschl, Romina Plötner & Katharina Bürstenbinder. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics, Plant Physiology pp.00961.2017; DOI: 10.1104/pp.17.00961

Ansprechpartnerin:
Dr. Katharina Bürstenbinder
Tel.: 0345 5582 1225
katharina.buerstenbinder@ipb-halle.de

http://www.ipb-halle.de/public-relations/news/article-detail/die-vermessung-des-…
http://www.plantphysiol.org/content/early/2017/09/20/pp.17.00961
http://PaCeQuant kann unter http://mitobo.informatik.uni-halle.de/index.php/Main_Page heruntergeladen werden.

Media Contact

Dipl.Biol. Sylvia Pieplow idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Theoretische Physik: Modellierung zeigt, welche Quantensysteme sich für Quantensimulationen eignen

Eine gemeinsame Forschungsgruppe um Prof. Jens Eisert von der Freien Universität Berlin und des Helmholtz-Zentrum Berlin (HZB) hat einen Weg aufgezeigt, um die quantenphysikalischen Eigenschaften komplexer Festkörpersysteme zu simulieren. Und…

Rotation eines Moleküls als „innere Uhr“

Mit einer neuen Methode haben Physiker des Heidelberger Max-Planck-Instituts für Kernphysik die ultraschnelle Fragmentation von Wasserstoffmolekülen in intensiven Laserfeldern detailliert untersucht. Dabei nutzten sie die durch einen Laserpuls angestoßene Rotation…

Auf dem Weg zur fischfreundlichen Wasserkraft

In dem europaweiten Projekt „FIThydro“ unter Leitung der Technischen Universität München (TUM) haben Forscherinnen und Forscher in Zusammenarbeit mit Industriepartnern bestehende Wasserkraftwerke untersucht. Diese Ergebnisse nutzten sie, um neue Methoden…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close