Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Forschungserfolg mit Hilfe von Nanoantennen - Herzschlag von Nanoteilchen wird sichtbar

01.06.2011
Auch winzig kleine Nanoteilchen aus Gold, die nur einen Durchmesser von 40 Millionstel Millimeter haben, besitzen so etwas wie einen Herzschlag. Richtet man nämlich einen kurzen Laserpuls auf diese Teilchen, so heizen sie sich für sehr kurze Zeit auf und fangen an zu schwingen.

Allerdings sind Nanoteilchen auch in den besten Mikroskopen nicht mehr sichtbar und daher schwierig zu untersuchen. Auf dem Weg dahin hat Juniorprofessor Markus Lippitz vom Max-Planck-Institut für Festkörperforschung zusammen mit seinem Doktoranden Thorsten Schumacher jetzt einen Durchbruch erzielt, der in der Fachzeitschrift Nature Communications publiziert wurde.*) Er nutzte dabei eine Nanoantenne, die von Prof. Harald Giessen am 4. Physikalischen Institut der Universität Stuttgart bereits als Nanosensor erfolgreich angewendet wurde.


Das Messprinzip: Die dreieckigen Nanoantennen fokussieren die Laserstrahlung in den kleinen Goldpunkt, der zu schwingen beginnt und den durchgehenden Laserstrahl zeitlich moduliert.
(Foto Universität Stuttgart)

Durch die Analyse der Schwingungen können Wissenschaftler einiges über das Nanogold lernen: Verhält es sich beim Schwingen wie ein Stück Stahl, spielt eher das Volumen eine Rolle, schwingt es wie ein aufgeblasener Luftballon, wird das Verhalten eher von der Oberfläche dominiert. Dieses spannende, neue Forschungsfeld nennt sich Nanomechanik, und der Stuttgarter Juniorprofessor Markus Lippitz ist einer seiner führenden Vertreter. In seinen Labors am Max-Planck-Institut für Festkörperforschung befindet sich ein kompliziertes Experiment aus Lasern, Spiegeln und Nanoteilchen. Dieser optische Aufbau ermöglicht es, den Schwingungen wie mit einem Stroboskop zuzusehen. Wenn ein Nanoteilchen in einem Laserstrahl sitzt und gleichzeitig schwingt, so wird die Intensität des Laserstrahls ganz leicht moduliert. Diese feinsten Oszillationen kann Lippitz mit einem speziellen, von ihm entwickelten Verfahren messen.

Prinzip wie bei einem Handy
Lippitz träumt davon, auch die mechanischen Eigenschaften allerkleinster Nanoteilchen zu untersuchen. „Dann wäre das Verhältnis von Oberfläche zu Volumen riesig, und wir würden ganz neue nanomechanische Eigenschaften erwarten“, erklärt er. Um diesem Traum ein Stück näher zu kommen, platzierte er eine kleine Nanoantenne des Doktoranden Mario Hentschel in die Nähe des winzigen Teilchens. Diese Nanoantenne sorgt dafür, dass das Laserlicht besonders scharf gebündelt und in das zu untersuchende Nanoteilchen eingekoppelt wird. Umgekehrt werden die Lichtmodulationen aufgrund der nanomechanischen Schwingungen sehr effizient wieder in den Laserstrahl eingekoppelt. „Das ist das erste Mal, dass jemand Nanoantennen nutzt, um nichtlineare optische Effekte zeitaufgelöst zu untersuchen. Das Ganze funktioniert wie bei einem Handy, bei dem die Antenne dafür sorgt, dass die elektromagnetischen Wellen in die kleinen Schaltkreise des Handys effektiv ein- und ausgekoppelt werden“, erklärt Lippitz.
Lippitz sieht ein riesiges Anwendungspotenzial für seine neue Methode: „In Zukunft werden wir Nano-Objekte von nur wenigen Nanometern Durchmesser in den Brennpunkt einer Nanoantenne legen und dabei mithilfe von nichtlinearer Optik Abläufe studieren können, die nur wenige Femtosekunden (1 Femtosekunde = 1 Milliardstel einer Millionstel Sekunde) dauern. Dann können wir gleichsam Filme auf der Nanoskala drehen, die die extremste Zeitlupe besitzen, die man sich nur vorstellen kann. Man wird Halbleiter-Quantenpunkte, aber auch chemische und biologische Objekte, wie zum Beispiel kleinste Viren auf diese Art untersuchen können.“ Der Leiter des 4. Physikalischen Instituts, Prof. Harald Giessen, fügt hinzu: „Die Arbeit von Markus Lippitz ist ein weiterer Beweis für die sehr erfolgreiche Zusammenarbeit zwischen dem Max-Planck-Institut und der Universität Stuttgart. Markus Lippitz ist ein hervorragender Nachwuchswissenschaftler, der auch an die Stuttgarter Exzellenzinitiative im Rahmen der Graduiertenschule „Advanced Condensed Matter Science“ unterstützt. Die Arbeiten von Markus Lippitz wurden vom Land Baden-Württemberg im Rahmen der Juniorprofessoren-Initiative und von der Deutschen Forschungsgemeinschaft sowie vom Bundesministerium für Bildung und Forschung finanziell gefördert.

Weitere Informationen bei Prof. Markus Lippitz, Max-Planck-Institut für Festkörperforschung, Tel. 0049.711-689-1777, e-mail m.lippitz@fkf.mpg.de, sowie bei Prof. Harald Gießen, 4. Physikalisches Institut, Tel. 0049.711/685-65111, e-mail giessen@physik.uni-stuttgart.de.

*)Th. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz: Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle, Nature Communications 2 (2011), http://dx.doi.org/10.1038/ncomms1334

Andrea Mayer-Grenu | Universität Stuttgart
Weitere Informationen:
http://dx.doi.org/10.1038/ncomms1334
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

nachricht Was Einstein noch nicht wusste
20.09.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

Gesundheitstipps und ein virtueller Tauchgang zu Korallenriffen

20.09.2018 | Veranstaltungen

Internationale Experten der Orthopädietechnik tagen in Göttingen

19.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bei Depressionen ist Hirnregion zur Stresskontrolle vergrößert

20.09.2018 | Biowissenschaften Chemie

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungsnachrichten

Was Einstein noch nicht wusste

20.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics