Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Starke Magnetfelder mit Neutronen sichtbar machen

22.08.2019

Forschende des Paul Scherrer Instituts PSI haben eine neue Methode entwickelt, mit der man starke Magnetfelder exakt vermessen kann. Dafür nutzen sie Neutronen, die mithilfe der Spallationsquelle SINQ gewonnen werden. Damit lassen sich deshalb künftig Felder von Magneten vermessen, die bereits fest in Geräten installiert sind und somit für andere Sondierungstechniken nicht zugänglich sind. Ihre Ergebnisse veröffentlichen die Forschenden nun im Fachmagazin Nature Communications.

Neutronen sind, wie ihr Name schon sagt, nach aussen hin elektrisch neutral und Bausteine fast aller Atomkerne. Aufgrund ihrer Eigenschaft, einen sogenannten Spin zu besitzen, treten Neutronen mit Magnetfeldern in Wechselwirkung.


Das Gerät zur Bestimmung der Ausrichtung des Magnetfeldes funktioniert wie ein Kompass. Das rote Ende des blau-roten Stifts zeigt in Richtung des Nordpols.

Foto: Paul Scherrer Institut/Mahir Dzambegovic


Christian Grünzweig (li.) und Jacopo Valsecchi betrachten einen Magneten, der jenen gleicht, die beispielsweise auch bei Magnetstickern für Kühlschranktüren eingesetzt werden.

Foto: Paul Scherrer Institut/Mahir Dzambegovic

Dass sich diese Eigenschaft für das Sichtbarmachen von Magnetfeldern nutzen lässt, haben jetzt Forschende des Paul Scherrer Instituts PSI gezeigt. Dazu nutzten sie polarisierte Neutronen, also alle Neutronen mit einheitlichem Spin.

Durchlaufen Strahlen polarisierter Neutronen ein Magnetfeld, so lässt sich hinter diesem Feld eine Brechung des Neutronenstrahls detektieren. Aus dem Brechungsmuster wiederum kann man das Magnetfeld und insbesondere Unterschiede der Feldstärken rekonstruieren. Erstmals wurden mit dieser Methode, auch bekannt als polarisierte Neutronengitter-Interferometrie (pnGI), Magnetfelder untersucht.

Eine Million Mal stärker als das Erdmagnetfeld

Mit pnGI lassen sich sehr starke Magnetfelder vermessen, die eine sogenannte Gradientenstärke in der Grössenordnung von 1 Tesla pro Zentimeter aufweisen. «Dadurch bewegen wir uns in Grössenordnungen, die etwa eine Million Mal stärker sind als das Erdmagnetfeld», sagt Christian Grünzweig, Neutronenforscher am Paul Scherrer Institut PSI. Bislang liessen sich mit Neutronen nur deutlich schwächere Magnetfelder ausmessen.

Von der Lichtmaschine bis zum MRT

Für die neue Methode sind zahlreiche Anwendungen denkbar, vor allem weil Neutronen die meisten Materialien zerstörungsfrei durchdringen. «So können wir auch Magnete und ihre Felder bestimmen, die nur schwer zugänglich sind, weil sie bereits in eine Apparatur eingebaut sind», erklärt Jacopo Valsecchi, Erstautor der Studie und Doktorand am PSI.

«Die Anwendungen erstrecken sich von Lichtmaschinen in Automotoren über viele Komponenten des Energieversorgungssystems bis zu Magnetfeldern von Magnetresonanztomografen, wie sie in der Medizin eingesetzt werden.»

Dass ihre Methode funktioniert, belegten die Forscher unter anderem damit, dass sie mithilfe von Computermodellen, die zu erwartenden Ergebnisse einer Messung simulierten. Anschliessend überprüften sie dann, ob sich bei einer realen Messung tatsächlich vergleichbare Ergebnisse erzielen lassen. «Die Resultate aus den Simulationen und die tatsächlichen Messergebnisse stimmen sehr gut überein», sagt Grünzweig.

Mit dem neuen Verfahren können auch Schwankungen im Magnetfeld nachgewiesen werden. So besitzen auch Dauermagnete, wie sie wohl jeder von Magnetstickern für die Kühlschranktür kennt, kein homogenes Magnetfeld. «Mögliche Gradienten können wir nun nachweisen, auch wenn es sich um ein sehr starkes Magnetfeld handelt», so Physiker Valsecchi.

Ihre Ergebnisse veröffentlichen die Forscher nun im Fachmagazin Nature Communications.

Text: Paul Scherrer Institut/Sebastian Jutzi

Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2100 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 407 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.

Wissenschaftliche Ansprechpartner:

Dr. Christian Grünzweig
Labor für Neutronenstreuung und Imaging
Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 46 62
E-Mail: christian.gruenzweig@psi.ch [Deutsch, Englisch]

Originalpublikation:

Originalveröffentlichung

Visualization and quantification of inhomogeneous and anisotropic magnetic fields by polarized neutron grating interferometry
Jacopo Valsecchi, Ralph P. Harti, Marc Raventós, Muriel D. Siegwart, Manuel Morgano, Pierre Boillat, Markus Strobl, Patrick Hautle, Lothar Holitzner, Uwe Filges, Wolfgang Treimer, Florian M. Piegsa, Christian Grünzweig
Nature Communications, 22. August 2019
DOI: https://dx.doi.org/10.1038/s41467-019-11590-2

Weitere Informationen:

http://psi.ch/node/30062 – Darstellung der Mitteilung auf der Webseite des PSI und Bildmaterial

Paul Scherrer Institut/Sebastian Jutzi | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: ETH Erdmagnetfeld Magnetfeld Neutronen PSI spin starke Magnetfelder

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht TU Dortmund erstellt hochgenaues 3D-Modell vom Rover-Landeplatz auf dem Mars
18.09.2019 | Technische Universität Dortmund

nachricht Rostock Scientists Achieve Breakthrough in Quantum Physics
18.09.2019 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics