So könnten unkonventionelle Supraleiter funktionieren: neue Phase entdeckt

Diese Ergebnisse erlauben neue Einblicke in die Wechselwirkungen von Atomen und Elektronen, die für das ungewöhnliche Phänomen der Supraleitung verantwortlich sind. Das Team, dem auch Prof. Dr. Ilya Eremin vom Lehrstuhl für Theoretische Festkörperphysik der Ruhr-Universität angehört, berichtet in „Nature Communications“.

Supraleiter leiten Strom verlustfrei

Supraleiter können Strom verlustfrei leiten – eine einzigartige Eigenschaft. Selbst ein guter Leiter wie Kupfer, das in den meisten Stromkabeln genutzt wird, verliert Energie aufgrund des elektrischen Widerstands. Dennoch werden Supraleiter zurzeit nicht im Alltag genutzt, weil sie sehr tiefe Temperaturen benötigen, um zu funktionieren. Neu entdeckte sogenannte unkonventionelle Supraleiter könnten vielleicht bei höheren Temperaturen arbeiten. Bislang ist aber wenig verstanden, welche Mechanismen der Supraleitung in unkonventionellen Materialien zugrunde liegen.

So funktionieren konventionelle Supraleiter

Elektronen stoßen sich normalerweise aufgrund ihrer negativen Ladungen gegenseitig ab. In konventionellen Supraleitern bilden sie jedoch Paare, indem sie die umliegenden Atome verzerren. Solch ein Elektronenpaar kann leichter durch das Material fließen als einzelne Elektronen. Auch in unkonventionellen Supraleitern treten Elektronenpaare auf; welcher Mechanismus sie zusammenbindet, ist jedoch unbekannt.

Kristallstruktur ändert sich beim Abkühlen

Das Forscherteam untersuchte das Matetrial Eisen-Arsenid, das bei -240 Grad Celsius supraleitend wird. Bei Raumtemperatur, also im nicht supraleitenden Zustand, sind die Atome in einem quadratischen Kristallgitter angeordnet, das vierfach symmetrisch ist. Kühlt man das Material jedoch soweit ab, dass es supraleitend wird, verformt sich das Kristallgitter in eine rechteckige Form, die zweifach symmetrisch ist; man spricht von nematischer Ordnung. Bislang glaubte man, dass sich die nematische Raumstruktur ab einer gewissen Temperatur ausbildet und bei weiterem Abkühlen erhalten bleibt, bis die Supraleitung eintritt. Diese Theorie widerlegte das Team. Kurz bevor Eisen-Arsenid supraleitend wird, nimmt es erneut eine vierfach symmetrische Kristallstruktur ein.

Magnetische Wechselwirkungen könnten der Schlüssel zur Supraleitung sein

Wie die nematische Ordnung zustande kommt, ist seit Langem eine ungelöste Frage. Eine Theorie besagt, dass die zweifach-symmetrische Raumstruktur auf bestimmten Elektronenanordnungen basiert; eine andere Theorie postuliert, dass sie auf Magnetismus beruht. Gemeinsam mit Kollegen der University of Wisconsin hat Ilya Eremin ein Modell erstellt, dass die nematische Ordnung durch magnetische Wechselwirkungen erklärt. Die neuen Daten stützen dieses Modell. Es besagt auch, dass magnetische Wechselwirkungen der Schlüssel zur Supraleitung sind. Die Bildung von Elektronenpaaren in unkonventionellen Supraleitern basiert also möglicherweise auf Magnetismus.

Titelaufnahme

S. Avci et al. (2014): Magnetically driven suppression of nematic order in an iron-based superconductor, Nature Communications, DOI: 10.1038/ncomms4845

Weitere Informationen

Prof. Dr. Ilya Eremin, Institut für Theoretische Physik III der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-26604, E-Mail: Ilya.Eremin@rub.de

Media Contact

Dr. Julia Weiler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer