Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwarze Löcher - die Gasbläser des Universums

30.04.2010
Die Gravitationsfallen fegen Gas nicht nur aus ihren Galaxien sondern sogar aus dem Raum zwischen Galaxiengruppen

Astronomen versuchen schon lange zu verstehen, wie Schwarze Löcher mit ihrer Umgebung wechselwirken; bis heute haben sie dieses sogenannte Feedback nur unzureichend verstanden. Beobachtungen und Simulationen zeigen, dass die Jets in besonders aktiven Galaxien - sie leuchten überwiegend im Radiobereich - große Mengen Materie mit nahezu Lichtgeschwindigkeit ins All transportieren. Diese Plasmablasen geben ihre Energie an das Gas ab, das den Raum zwischen den einzelnen Galaxien ausfüllt. Die charakteristischen "Fingerabdrücke" für dieses Radio-Feedback lassen sich sowohl im Radio- als auch im Röntgenbereich nachweisen.


Falschfarbenaufnahme des Zentrums einer Galaxiengruppe im Röntgenbereich. Der Materiejet, der vom zentralen Schwarzen Loch ausgestoßen wird, ist durch seine Strahlung im Radiobereich (überlagert, blau-violett) deutlich zu erkennen. Bild: S. Giodini, A. Finoguenov/MPE

Besonders interessant erscheinen Galaxiengruppen, in denen mehrere Milchstraßensysteme durch die Schwerkraft gebunden sind. Studien haben kürzlich gezeigt, dass die Gasmenge in solchen Gruppen geringer ist, als in kosmologischen Modellen vorhergesagt. Die Astronomen erklären sich dieses Defizit damit, dass große Mengen an mechanischer Energie aus den zentralen Schwarzen Löchern einen Teil des intergalaktischen Gases wegblasen könnten. Bis heute war das allerdings nur eine Hypothese, die Untersuchungen beschränkten sich auf eine Handvoll naher Objekte, die von weniger (Radio-)leuchtstarken Schwarzen Löchern bevölkert werden.

Ein Team um Stefania Giodini am Max-Planck-Institut für extraterrestrische Physik in Garching hat nun eine der größten Studien an Galaxiengruppen und -haufen vorgenommen, die im Röntgenbereich nachgewiesen und mit XMM-Newton identifiziert wurden. (Galaxienhaufen umfassen bis zu mehrere tausend Mitglieder, sind also deutlich größer und massereicher als Galaxiengruppen.) Die Astronomen untersuchten die Energien des Radio-Feedback in einem Teil der fast 300 Galaxiengruppen, die sich in einem bestimmten Gebiet des Himmels - dem großflächigen "Cosmos-Feld" - befinden.

Die Ergebnisse zeigen, dass die Aktivität der Schwarzen Löcher in den Zentren der einzelnen Galaxien tatsächlich einen dramatischen Effekt auf die Umgebung haben muss: Sie stoßen dermaßen viel Energie aus, dass damit das Gas weit aus den Gruppen heraus geblasen wird. Damit ist das Rätsel um die fehlende Materie gelöst - und zum ersten Mal der erhebliche Einfluss von Schwarzen Löchern in Galaxiengruppen nachgewiesen.

"Normalerweise ist das Gas durch die Gravitation gebunden. Die Schwarzen Löcher können aber so aktiv sein, dass sie die Schwerkraftfesseln sprengen. Somit wird ein bedeutender Anteil des Gases aus den Galaxiengruppen entfernt", sagt Stefania Giodini. In den massereicheren Galaxienhaufen dagegen ¬ließ sich ein derartiger Effekt nicht nachweisen; dort verhindert offenbar die enorme Gravitationskraft, dass das Gas dem Haufen entkommt.

"Es ist beeindruckend, was für eine erhebliche Wirkung der Radiofluss von Galaxien auf ihre Umgebung haben kann", sagt Vernesa Smolèiæ vom California Institute of Technology, Mitautorin der Studie. "Das geschieht wahrscheinlich nicht nur auf Größenskalen innerhalb der Galaxien, sondern auch auf Skalen von einigen Millionen Lichtjahren." So scheinen Radiogalaxien regelrechte Störenfriede zu sein, die das Gas um die Galaxie herum auf ungeahnt hohe Temperaturen aufheizen und einen Teil der Materie aus den Galaxiengruppen herausschleudern.

Hans Böhringer, Leiter der Forschungsgruppe für Galaxienhaufen und Kosmologie am Max-Planck-Institut für extraterrestrische Physik, nahm ebenfalls an dieser Studie teil: "In einigen nahen Galaxienhaufen sehen wir den Effekt der Energieausbrüche Schwarzer Löcher auf ihre Umgebung in Form von Plasmablasen, die im Radiobereich leuchten. Einen direkten Nachweis für periodisch wiederkehrende Ausbrüche erhalten wir aber nur durch die Untersuchung einer großen Zahl von Galaxiengruppen."

Der enorme Einfluss der einzelnen Galaxienkerne erstaunt selbst die Astronomen. "Ich konnte mir nie vorstellen, in welchen Ausmaß Schwarze Löcher das Gas in Galaxiengruppen verdrängen können", sagt Mitautor Alexis Finoguenov vom Max-Planck-Institut für extraterrestrische Physik und der Universität Maryland, Baltimore. "Sie sind die Gasbläser des Universums."

Originalveröffentlichung:

S. Giodini, V. Smolèiæ, A. Finoguenov, H. Boehringer, L. Bîrzan, G. Zamorani, A. Oklopèiæ, D. Pierini, G.W. Pratt, E. Schinnerer, R. Massey, A.M. Koekemoer, M. Salvato , D.B. Sanders, J. S. Kartaltepe, D. Thompson
Radio Galaxy Feedback in X-Ray Selected Groups from COSMOS: The Effect on the ICM

The Astrophysical Journal, 714, 218, 1. Mai 2010

Weitere Informationen erhalten Sie von:

Dr. Hannelore Hämmerle (Pressesprecherin)
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3980
E-Mail: hannelore.haemmerle@mpe.mpg.de
Dr. Stefania Giodini, Exzellenzcluster "Origin and Structure of the Universe"
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3340
E-Mail: giodini@mpe.mpg.de
Dr. Hans Böhringer
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3347
E-Mail: hans.boehringer@mpe.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was die Tiefsee über die Sterne verrät
18.12.2018 | Technische Universität Berlin

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Neue Methode für sichere Brücken

18.12.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics