Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelle Kommunikation im Weltraum

15.10.2012
DLR unterstützt Forschung an Nanosatelliten mit 3,3 Millionen Euro

Erstmals sollen mehrere Kleinsatelliten, die aufgrund der geringen Startmasse (von weniger als 15 Kilogramm) auch als Nanosatelliten klassifiziert werden, durch Wissenschaftler der TU Berlin im Weltraum ein kooperierendes Kommunikationsnetzwerk aufspannen.

Mit einem solchen Netzwerk sollen in Zukunft im Weltraum bestimmte Daten automatisch zu Produkten verarbeitet werden können, die sofort dem Endnutzer zur Verfügung gestellt werden.

In der bisher üblichen Satellitenkommunikation im niederen Erdorbit werden anfallende Rohdaten bei einem Überflug über Bodenstationen mit einer Verzögerung von mehreren Stunden zur Erde gesendet, prozessiert, archiviert und verteilt. Die Auslieferung von Datenprodukten dauert meist ein bis mehrere Tage.

Für bestimmte Fragen der Frühwarnung und des Katastrophenmonitoring wäre ein Zeitgewinn durch Sofortverarbeitung im Orbit und die Kommunikation von Satellit zu Satellit bis zur nächsten Bo-denstation ein hoher Gewinn. Wichtige Fragen der Kommunikation in einem Kleinsatellitennetzwerk werden nun in einem neuen Forschungsvorhaben der TU Berlin ergründet und ihre Lösung im Weltraum demonstriert.

Im Rahmen des Projektes S-Net (S-Band Netzwerk für kooperierende Satelliten) wollen Wissenschaftler der Technischen Universität Berlin (TU Berlin) ein bisher weltweit einmaliges Netzwerk aus mehreren Nanosatelliten aufbauen und deren technische Leistungsfähigkeit demonstrieren. Ein solches Weltraumnetzwerk aus Nanosatelliten kann durch den gezielten Austausch von Informationen untereinander eine höhere örtliche und zeitliche Abdeckung der Erdoberfläche erzielen als größere Einzelsatelliten. Zusätzlich kann der eventuelle Ausfall eines einzelnen Satelliten innerhalb eines autonomen Netzwerks besser verkraftet werden.

Im Detail sollen insgesamt vier Nanosatelliten mit je einem an der TU Berlin neu entwickelten netzwerkfähigen Funkgerät (Projektname: Slink) ausgestattet werden. Dieses Funkgerät kommuniziert im S-Band Frequenzbereich (2000 - 2300 MHz) und erlaubt dem Satelliten nicht nur die Kommunikation der einzelnen Teilnehmer mit der Bodenstation, sondern auch den Datenaustausch zwischen den einzelnen Nanosatelliten. Dabei werden moderne Übertragungsverfahren wie DQPSK und Turbo Code eingesetzt, um eine hohe Datenrate bei möglichst geringem Energieverbrauch zu erzielen. Es kann eine Datenrate von bis zu 100 Kilobit pro Sekunde zwischen zwei Satelliten erreicht werden. Darüber hinaus ermöglicht das Funkgerät auch eine beidseitige Kommunikation mit einer Bodenstation mit einer Datenrate von 1 Megabit pro Sekunde. Das ist für Kleinsatellitenkommunikation Weltspitze.

Durch die Erprobung und Demonstration eines Intersatelliten-Netzwerkes anhand entsprechender Funktechnologien und Kommunikationsprotokolle soll der wissenschaftliche und technische Grundstein für zukünftige autonome Multisatelliten-Missionen gelegt werden. In Zukunft könnte ein flächendeckendes Netzwerk aus Nanosatelliten die Erde umkreisen und zur Erdbeobachtung (zum Beispiel von maritimen Systemen), Katastrophenmonitoring oder Frühwarnsystemen eingesetzt werden. Die gesammelten Daten könnten über das kosteneffiziente, aber dennoch flexible autonome Netz zeitoptimal zum Nutzer gesendet werden.

Das Forschungsvorhaben wird über einen Zeitraum von mehr als 4 Jahren vom Deutschen Institut für Luft- und Raumfahrt mit einer Beteiligungssumme von 3,3 Millionen Euro gefördert. Das Projekt wird die Richtlinie zur Vermeidung von Weltraummüll (European Code of Conduct for Space Debris Mitigation, 2004) berücksichtigen. Die Entsorgung der Satelliten aus dem Erdorbit nach Missionsbetrieb erfolgt durch die passive Absenkung der Orbithöhe. Beim Eintritt in die Erdatmosphäre verglühen die Satelliten aufgrund der hohen Reibungstemperatur, so dass kein Weltraummüll im Orbit hinterlassen wird.

Weitere Informationen erteilt Ihnen gern: Dr.-Ing. Zizung Yoon, TU Berlin, Fachgebiet Raumfahrttechnik, Tel.: 030/314-24438, E-Mail: zizung.yoon@tu-berlin.de

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht TU Dortmund erstellt hochgenaues 3D-Modell vom Rover-Landeplatz auf dem Mars
18.09.2019 | Technische Universität Dortmund

nachricht Rostock Scientists Achieve Breakthrough in Quantum Physics
18.09.2019 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics