Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlaufenlos zum Gel

09.06.2016

Gele gehören längst zu unserem Alltag, kommen in den verschiedensten Produkten vor. Aber warum werden Gele überhaupt fest? Warum können sich die gelbildenden Teilchen nicht mehr frei wie in einer Flüssigkeit bewegen? Diese Fragen beschäftigen die Wissenschaft bereits seit Jahrzehnten. Einer Gruppe von Forschern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Heinrich-Heine-Universität Düsseldorf konnte nun nachweisen, dass diese Eigenschaft von Gelen gerichteten Teilchenketten in ihrer netzwerkartigen Struktur geschuldet ist. Ihre Ergebnisse haben sie nun in dem renommierten Journal Nature Communications* veröffentlicht.

Für diesen Nachweis untersuchten die Wissenschaftler als Modellsystem ein Gel, welches aus einer Mischung von Kolloiden, also Teilchen, die nur tausendstel Millimeter klein sind, und noch kleineren Makromolekülen, sogenannten Polymeren, entsteht. Bevor die flüssige Mischung zum Gel wird, können sich alle Teilchen frei bewegen.


Kolloidales Gel aufgenommen mit einem Konfokalmikroskop. Die Bildung eines solchen Gels geht einher mit gerichteten Ketten aus Teilchen (hier rot illustriert), die das gesamte System durchspannen.

Bild: Ronja Capellmann, Michael Schmiedeberg

Die Kolloide stoßen sich dabei in der Regel ab. Kommen sie sich jedoch so nahe, dass selbst die kleineren Polymere nicht mehr dazwischen passen, werden sie von diesen noch dichter zusammengeschoben. Dadurch bilden sich Kolloidketten.

Formt sich aus diesen Ketten ein komplexes Netzwerk im gesamten System, entsteht ein Gel – so lautete zumindest die bisherige Annahme.

... mehr zu:
»Gel »Kolloiden »Netzwerk »Teilchen »Zahnpasta

Denn die Wissenschaftler aus Erlangen und Düsseldorf haben jetzt herausgefunden, dass die Teilchenketten eine bestimmte Form haben müssen, um ein Gel zu bilden: Sie müssen gerichtet sein, das heißt, sie müssen sich ohne Schlaufen durch das System ziehen.

Bildlich gesprochen kann man sich das so vorstellen: Läuft man entlang einer gerichteten Kette, durchwandert man das System nur in eine Richtung, bei Schlaufen hingegen wäre man gezwungen, auch Schritte zurück zu machen. Durch diese gerichteten Teilchenketten, die dem System im Gegensatz zu Schlaufen Stabilität verleihen, entsteht die feste Eigenschaft des Gels.

Die Ergebnisse sind von großer Bedeutung für das Verständnis der Materialeigenschaften von Gelen, die zum Beispiel Zahnpasta, Gelatine und vielen anderen Kosmetik- und Lebensmittelprodukten beigemischt werden, um sie zu stabilisieren.

„Wir konnten zudem nachweisen, dass Gele dazu neigen, sich zusammenzuziehen, sobald es systemdurchspannende Teilchenketten gibt“, sagt Prof. Dr. Michael Schmiedeberg vom Institut für Theoretische Physik. „Das Wissen darum könnte dazu beitragen, die Herstellungsprozesse von Lebensmitteln noch zu verbessern.“

*Nature Communications: http://dx.doi.org/10.1038/NCOMMS11817

Weitere Informationen:
Prof. Dr. Michael Schmiedeberg
Tel.: 09131/85-28449
michael.schmiedeberg@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Berichte zu: Gel Kolloiden Netzwerk Teilchen Zahnpasta

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Emulsionen masschneidern

15.11.2018 | Materialwissenschaften

LTE-V2X-Direktkommunikation für mehr Verkehrssicherheit

15.11.2018 | Informationstechnologie

Daten „fühlen“ mit haptischen Displays

15.11.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics