Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Raum-Zeit-Symmetrie macht optische Systeme unsichtbar

09.08.2012
Physiker der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben erstmals experimentell nachgewiesen, dass ein optisches System von einer Seite quasi unsichtbar sein und von der anderen wie ein Spiegel wirken kann. Die Ergebnisse wurden jetzt in der renommierten Fachzeitschrift „Nature“ publiziert.

Eines der Kernthemen der modernen Optik ist die Entwicklung photonischer Materialien und komplexer Systeme mit neuen Eigenschaften und hohem Anwendungspotential. Solche Metamaterialien beruhen derzeit vor allem auf der Manipulation der Lichtbrechung im Subwellenlängenbereich – auch so genannte „optische Tarnkappen“ funktionieren nach diesem Prinzip.


Künstlerische Illustration zur einseitigen Unsichtbarkeit: Kommt ein Lichtstrahl von links, so sind die Reflektionen an den rot-blauen Streukörpern aus PT-symmetrischem Material stärker als der Lichtstrahl selbst. Fällt der gleiche Lichtstrahl jedoch von rechts auf die aktiven Elemente, so ist die Reflektion stark unterdrückt und der Strahl kann die Elemente ungehindert durchdringen – die Streukörper sind von rechts somit unsichtbar.
Bild: Christoph Bersch


Die einseitige Unsichtbarkeit in der experimentellen Messung
Bild: Christoph Bersch

Vor kurzem wurde entdeckt, dass die Lichtausbreitung auch durch ein gezieltes Wechselspiel von Verstärkung und Verlusten substanziell beeinflusst werden kann. Dazu muss eine bestimmte Symmetriebedingung – die Parity-Time-Symmetrie (PT) –eingehalten werden, so dass bei einer Raum-Zeit-Spiegelung die Verstärkung und Verluste des Lichts ineinander überführt werden.

„Dieses neue Konzept wurde interessanterweise zuerst als alternative Interpretation der Quantentheorie entwickelt“, erklärt Prof. Dr. Ulf Peschel vom Institut für Optik, Information und Photonik der FAU. Gemeinsam mit dem Erlanger Max-Planck-Institut und ihren Kollegen aus Orlando konnten die Forscher dieses Prinzip jetzt auf die Optik übertragen und auf Lichtpulse in einem großen optischen Netzwerk anwenden. In ihren Experimenten zeigten die Wissenschaftler, dass sich Licht in Faserschleifen mit periodisch gesteuerter Verstärkung und Verlusten grundsätzlich anders ausbreitet als in konventionellen Materialien: Die Leistung optischer Felder kann sich nahezu explosionsartig verändern – in bestimmten Parameterbereichen bewegen sich die Flanken von Lichtpulsen mit Überlichtgeschwindigkeit.

Dank des Wechselspiels von Verstärkung und Verlusten werden so genannte PT-symmetrische Materialien sogar partiell unsichtbar: „Fällt ein Lichtstrahl von einer Seite auf das Medium, wird er vollständig und ohne jegliche Reflexionen transmittiert – das Licht verhält sich so, als sei kein Streukörper vorhanden“, erklärt Prof. Peschel. „Kommt der gleiche Lichtstrahl dagegen von der entgegengesetzten Seite, treten extrem starke Reflexionen auf.“ Das in den Experimenten angewendete Verfahren kann direkt auf mikrostrukturierte optische Systeme übertragen werden, wo es völlig neue Anwendungsmöglichkeiten eröffnet.

In dem Projekt arbeiten Wissenschaftler des Instituts für Optik, Information und Photonik der FAU, des Exzellenzclusters „Engineering of Advanced Materials“ (EAM), der Erlangen Graduate School in Advanced Optical Technologies (SAOT), des Max-Planck-Institut für die Physik des Lichts und der University of Central Florida in Orlando zusammen. Die Forschungsergebnisse wurden jetzt in der renommierten Fachzeitschrift Nature veröffentlicht (DOI:10.1038/nature11298).

Weitere Informationen für die Medien:

Alois Regensburger
Tel.: 09131/85-20343
alois.regensburger@mpl.mpg.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.mpl.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht TU Dortmund erstellt hochgenaues 3D-Modell vom Rover-Landeplatz auf dem Mars
18.09.2019 | Technische Universität Dortmund

nachricht Rostock Scientists Achieve Breakthrough in Quantum Physics
18.09.2019 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics