Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantengravitation im Spiegel sehen?

19.03.2012
Auf der Planck-Skala von extrem großen Energien und sehr kleinen Entfernungen wird die Verschmelzung der Quantenphysik mit Einsteins Theorie der Gravitation erwartet.
Diese Skala ist jedoch so weit von experimentellen Möglichkeiten entfernt, dass es als unmöglich gilt, die Quantengravitation zu testen. Eine Kollaboration zwischen Èaslav Brukner und Markus Aspelmeyer, beide Quantenphysik-Physiker an der Universität Wien, sowie Myungshik Kim vom Imperial College London, hat jetzt ein Experiment mit Spiegeln auf der Skala der Planck-Masse vorgeschlagen, mit dem man einige Quantengravitationstheorien im Labor überprüfen könnte. Die Resultate erscheinen aktuell in "Nature Physics".

Eine seit langem ungelöste Aufgabe
Eine der wichtigsten und spannendsten Aufgaben der modernen Physik ist die Suche nach einer Theorie, die die Quantenmechanik mit Einsteins allgemeiner Relativitätstheorie vereinigt. Die Quantenmechanik beschreibt die Physik, die sich auf den Größenordnungen von einzelnen Teilchen, Atomen und Molekülen zeigt. Andererseits zeigt sich Einsteins allgemeine Relativitätstheorie vor allem bei großen Massen. Eine vereinheitlichte Theorie der Quantengravitation erwartet man erst auf der so genannten Planck-Skala von extrem großen Energien und sehr kleinen Entfernungen.

Darstellung eines Laserpulses, der mögliche Quantengravitationseffekte im Spiegel testet. oto: Jonas Schmöle, VCQ, Universität Wien)

Die Planck-Länge ist gerade mal 1,6 x 10-35 Meter groß: Würde man diese Länge als 1 Meter definieren, so wäre ein Atom so groß wie das gesamte sichtbare Universum. Und auch die Planck-Energie ist so groß, dass selbst der Large Hadron Collider des CERN nur einen winzigen Bruchteil dieser Energie erreicht.

Um nahe an die Planck-Energie zu kommen, müsste ein Teilchenbeschleuniger eine astronomische Größe haben. Die Planck-Skala kann auch durch die Planck-Masse beschrieben werden: Ein Staubkorn hat etwa diese Masse, was im Vergleich zu Atomen extrem schwer ist, sodass Quanteneffekte für solche Massen als nicht beobachtbar gelten. Die Planck-Skala ist somit so weit von Experimenten entfernt, dass es als nahezu unmöglich gilt, Theorien der Quantengravitation zu testen. Trotzdem haben Physiker jetzt einen Weg gefunden, Vorhersagen mancher Theorien der Quantengravitation im Experiment mit massiven Spiegeln zu testen.

Die Reihenfolge macht den Unterschied

Die Quantenmechanik verbietet es, die Position und die Geschwindigkeit eines Teilchens gleichzeitig zu kennen. Trotzdem sind aufeinanderfolgende Messungen vom Ort und vom Impuls möglich: Entweder man misst zuerst den Ort und dann den Impuls oder umgekehrt. In der Quantenphysik erhält man unterschiedliche Resultate, je nachdem welche Reihenfolge man wählt. Viele Theorien zur Quantengravitation besagen jedoch, dass sich dieser Unterschied abhängig von der Masse ändert, denn die Planck-Länge begrenzt die Messgenauigkeit vom Ort. Die Forscher in Wien und in London haben jetzt gezeigt, dass trotz dieser nur sehr kleinen Änderung ein messbarer Effekt bei sehr massiven Quantensystemen auftreten kann.

Neue Theorien mit beweglichen Spiegeln testen

Die Idee der Forscher besteht darin, diese Differenz zwischen den beiden Messreihenfolgen in neuen Quantensystemen zu testen: Mit neuen Techniken und Quantentechnologien ist es seit kurzem möglich, massive, bewegliche Spiegel in Quantenzustände zu bringen und diese mit sehr hoher Präzision auszumessen. Die Forscher schlagen vor, vier Wechselwirkungen zwischen einem Laserpuls und einem beweglichen Spiegel zu nutzen, um genau diesen Unterschied zwischen der Reihenfolge der Messungen des Orts und des Impulses zu untersuchen. Indem man die Wechselwirkungen ganz genau zeitlich koordiniert und präzise implementiert, ist es möglich, diesen Effekt auf den Laserpuls zu übertragen und ihn dann mit quantenoptischen Methoden auszulesen. "Jegliche Abweichung von dem erwarteten quantenmechanischen Ergebnis wäre sehr spannend", sagt Igor Pikovski, Hauptautor der Forschungsarbeit, "und selbst wenn man keine Abweichung misst, erhält man eine Einschränkung für mögliche neue Theorien". In der Tat machen einige der Theorien zur Quantengravitation von der Quantenmechanik abweichende Vorhersagen für das Ergebnis des Experiments. Die Forscher zeigen mit ihrer Arbeit, dass es möglich sein kann, einige Vorhersagen der immer noch unerforschten Quantengravitation direkt auf dem Labortisch zu testen.

Publikation in "Nature Physics":
Probing Planck-scale physics with quantum optics: I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim and C. Brukner. Nature Physics (2012) DOI: 10.1038/NPHYS2262

Wissenschaftlicher Kontakt
Dipl.-Phys. Igor Pikovski
Quantum Optics, Quantum Nanophysics, Quantum Information
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 83
M +43-699-172 071 81
igor.pikovski@univie.ac.at

Rückfragehinweis
Petra Beckmannova
(Büro Prof. Èaslav Brukner)
Quantum Optics, Quantum Nanophysics, Quantum Information
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 05
arndt-office@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.quantum.at
http://www.quantumfoundations.weebly.com

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuer Quantenzustand nachgewiesen
31.03.2020 | Technische Universität Braunschweig

nachricht Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation
30.03.2020 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Studie mit bispezifischem Antikörper liefert beeindruckende Behandlungserfolge bei Multiplem Myelom

01.04.2020 | Medizin Gesundheit

Unternehmenswissen - Wie gelingt der Umstieg von Präsenz auf Online?

01.04.2020 | Seminare Workshops

SmartKai – „Einparkhilfe“ zur Vermeidung von Schäden an Schiffen und Hafeninfrastruktur

01.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics