Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Odyssee in der Ionenfalle

31.08.2009
MPQ-Wissenschaftler demonstrieren "Quantenwanderung" an einzelnen gefangenen Ionen.

Viele klassische Rechenalgorithmen beinhalten sogenannte "random walks", bei denen mögliche Lösungswege nach dem Zufallsprinzip ausgewählt werden. Solche Algorithmen finden in einer Reihe von Gebieten eine Anwendung, z.B. in der Physik, Biologie, in den Wirtschaftswissenschaften oder sogar in der Psychologie.


In einem Quantenirrgarten liegen alle Wege in einem Superpositionszustand vor und können daher gleichzeitig beschritten werden. Die als Folge der Überlagerung auftretenden Interferenzen führen zu seltsamen Phänomenen wie der Selbstbegegnung des Quantenwanderers. Mit diesen \"Tricks\" kann der Ausgang aus dem Irrgarten, z.B. die gesuchte Lösung eines Algorithmus oder auch die effizienteste Form von Energietransfer in Pflanzen, um ein Vielfaches schneller als auf klassische Weise gefunden werden. MPQ/ Tobias Schätz

Überträgt man "random walks" auf Quantensysteme, dann erübrigen sich solche Entscheidungsfindungen. Denn im Unterschied zum klassischen Verfahren liegen die in Frage kommenden Pfade in einem Superpositionszustand vor, sodass bei "Quantenwanderungen" alle gleichzeitig beschritten werden können. Die dabei auftretenden Interferenzen führen zu neuartigen Phänomenen: so kann der "Quantenwanderer" sich z.B. an manchen Kreuzungen selbst begegnen.

"Quantum walks" könnten zum einen Rechenalgorithmen für Quantensysteme erheblich beschleunigen. Sie könnten aber auch dazu beitragen, den an mesoskopischen Systemen zu Tage tretenden Grenzbereich zwischen der klassischen und der quantenmechanischen Welt besser zu begreifen. Mit einem "proof-of-principle experiment" in einer elektromagnetischen Falle haben jetzt Dr. Tobias Schätz, Leiter der Nachwuchsgruppe "Quantensimulationen" am Max-Planck-Institut für Quantenoptik in Garching bei München, und seine Mitarbeiter erstmals deutlich den Unterschied zwischen der klassischen und der quantenmechanischen "Odyssee", mit einem Ion als Wanderer, demonstriert (Physical Review Letters, 28. August 2009).

Jedes Mal, wenn wir an eine Kreuzung kommen, müssen wir uns - vielleicht per Münzwurf - zwischen mehreren Wegen entscheiden. Nach mehreren Kreuzungen und Entscheidungen werden wir nur einige von vielen möglichen Pfaden gegangen sein. Dabei kann es vorkommen, dass manche Wege häufiger als andere beschritten werden.

Im Gegensatz dazu braucht sich ein "Quantenwanderer" nicht zu entscheiden, denn er hat gar keine Wahl. Beim jedem Münzwurf wird vielmehr eine Superposition von Kopf und Zahl erzeugt, sodass er allen Pfaden gleichzeitig folgen kann. Dabei kann es zu sonderbaren Situationen kommen, z.B. kann der Quantenwanderer, wenn Pfade an späteren Kreuzungen wieder aufeinanderstoßen, sich selbst begegnen. Aufgrund von Interferenzeffekten kann sich die Wahrscheinlichkeit dafür, an dieser Kreuzung zu sein, erhöhen, aber auch soweit verringern, dass er von dort gänzlich verschwindet.

In dem hier beschriebenen Experiment spielt ein einzelnes Magnesium-Ion, das in einer linearen elektromagnetischen Falle festgehalten wird, die Rolle des Quantenwanderers. Sein Bewegungsgrundzustand ist sozusagen die Ausgangsposition, von der aus es losmarschiert. Durch Einstrahlung von Radiofrequenz-Pulsen wird eine Überlagerung von zwei elektronischen Zuständen angeregt. Dieser Vorgang entspricht dem Münzwurf, durch den man eine Superposition von "linker" und "rechter" Wegentscheidung (Kopf und Zahl) erhält. Den notwendigen "Schubs", sich in Bewegung zu setzen, erhält das Ion durch ultraviolettes Licht einer genau abgestimmten Frequenz. Abhängig von seinem elektronischen Zustand wird das Ion von dem UV-Licht mal nach links und mal nach rechts gestoßen. Da die beiden elektronischen Zustände - Kopf und Zahl - in einem Überlagerungszustand vorliegen, werden auch die beiden Bewegungsmöglichkeiten des Ions - Schritt nach rechts und/oder Schritt nach links - überlagert. Bei der Quantenwanderung sind daher die beiden Münzwerte mit den beiden Bewegungsmöglichkeiten des Ions hochgradig verschränkt.

Die Vorgänge "Münzwurf" und "Positionswechsel" werden insgesamt drei Mal wiederholt, erst dann können Quanteneffekte sichtbar werden. Nach Beendigung dieser "Quantenevolution" wird gemessen, ob die Münze Kopf oder Zahl zeigt und auf welcher Position sich das Ion befindet. Dabei wird ausgenutzt, dass das Ion nur in einem der beiden "Münzzustände" Fluoreszenzlicht aussendet. Nach etwa tausend Messungen erhalten die Physiker so eine statistische Aussage darüber, wie häufig das Ion nach "rechts" oder "links" gegangen ist. Ihre Messdaten bestätigen die theoretische Vorhersage eines Ungleichgewichtes beider Richtungen, im Gegensatz zu dem, was man von einem klassischen System erwarten würde.

Die Gruppe von Tobias Schätz hat mit diesem Experiment, bei dem der Wanderer/das Ion alle Wege gleichzeitig gehen darf, deutlich die Unterschiede zum klassischen Gegenstück aufgedeckt: Die Quanteninterferenz verstärkt asymmetrische, nicht-klassische Verteilungen in den miteinander hochverschränkten Münzwurf- und Bewegungszuständen. Derzeit ist die Zahl der Wiederholungsschritte noch durch nichtlineare Effekte begrenzt. Die Wissenschaftler schlagen ein neues Konzept vor, mit dem sich die Quantenwanderung auf viele, im Prinzip sogar mehrere hundert Schritte ausdehnen lässt.

"Quantenwanderungen" könnten für eine Reihe von Anwendungen von fundamentalem Interesse sein. So lässt sich die Geschwindigkeit, den richtigen Weg zu finden, unter Umständen gewaltig steigern, wenn man nicht nach dem Zufallsprinzip einen nach dem anderen ausprobieren muss, sondern gleichzeitig alle beschreiten kann. Die Leistungsfähigkeit von Suchalgorithmen in der Informationsverarbeitung könnte dadurch erheblich gesteigert werden. Es gibt desweiteren Überlegungen, dass dieses quantenmechanische Verhalten auch für den Energietransfer in Pflanzen verantwortlich ist, der auf viele Wege verteilt weit effektiver verläuft, als mit klassischen Verfahren erreichbar wäre.

[Olivia Meyer-Streng/Tobias Schätz]

Originalveröffentlichung:
H. Schmitz, R. Matjeschk, C. Schneider, J. Glückert, M. Enderlein, T. Huber und T. Schätz
"Quantum walk of a trapped ion in phase space"
Physical Review Letters, 28. August 2009
Kontakt:
Dr. Tobias Schätz
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 199
Fax: +49 - 89 / 32905 - 311
E-Mail: tobias.schaetz@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics