Quanten im Blitzlicht

Mit &quot;gepulster Quanten-Optomechanik&quot; kann man das quantenmechanische Verhalten in der Bewegung eines makroskopischen Objekts direkt testen. Das wird in dieser Darstellung eines Schrödinger-Katzen-Zustandes als Rippel sichtbar (links). Unter kontinuierlicher Beobachtung verwaschen diese Quanteneffekte (rechts). Bildrechte: VCQ/Universität Wien<br>

Dieses Verfahren soll eine bisher unerreichte Genauigkeit für derzeitige Experimente liefern, die die Grenzen zwischen Quantenwelt und „klassischer Welt“ hin zu immer größeren Objekten verschieben. Ein internationales Team um Forscher des Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien präsentiert diese neue Methode in der aktuellen Ausgabe der renommierten Zeitschrift PNAS.

Eine der faszinierendsten und noch immer offenen Fragen der modernen Physik ist, inwieweit Quantenphänomene an Objekten unserer Alltagswelt beobachtbar sind. Um dies zu beantworten, werden Quantenexperimente an immer größeren und schwereren Objekten durchgeführt. Und da bedarf es einiger Tricks, denn je größer und schwerer die im Experiment verwendeten Objekte sind, umso schwieriger wird es, Quanteneffekte sichtbar zu machen.

Der Lichtblitz als „Scharfzeichner“

Die von den Forschern präsentierte Methode der „gepulsten Quanten-Optomechanik“ verwendet Lichtpulse, ähnlich einem Blitzlicht, die für Quantenmessungen an großen Objekten eine bislang unerreichte Genauigkeit ermöglichen. Die Funktionsweise des neuen Schemas beruht darauf, dass sich Quantenobjekte, im Widerspruch zu den Gesetzen der klassischen Physik, unter Beobachtung anders verhalten als im unbeobachteten Zustand. „Derzeit werden Objekte in solchen Experimenten kontinuierlich beobachtet. Dadurch werden allerdings die meisten Quantenphänomene verwaschen, ähnlich wie bei einem verschwommenen Foto einer schnellen Bewegung“, sagt Michael Vanner, Erstautor der Studie und Mitglied des Wiener Doktoratskollegs Complex Quantum Systems (CoQuS). „Die Lichtpulse frieren die Bewegung sozusagen ein und erzeugen dadurch ein gestochen scharfes Bild des Quantenverhaltens.“

Wie groß können „Quanten“ sein?

Mit der gepulsten Quanten-Optomechanik kann ein gänzlich neuer Blick in die Quantenwelt von Objekten geworfen werden, die größer und schwerer als die bisher untersuchten Objekte sind. Insbesondere kann diese Methode unmittelbar in laufenden Experimenten angewandt werden. Konkret untersuchen die Forscher Experimente, die Quantenphänomene in mikro-mechanischen Resonatoren, d.h. in vibrierenden, massiven Objekten beobachten wollen. „Indem man die Bewegung der Objekte unter die 'gepulste' Lupe nimmt, kann man beispielsweise herausfinden, ob makroskopische, mechanische Objekte in künftigen Quanten-Technologien eingesetzt werden können. Dies wird außerdem dazu beitragen, ein neues Licht auf die in der Natur scheinbar auftretende Trennung zwischen der Quantenwelt und der klassischen Welt zu werfen“, meint Michael Vanner.

Internationale Kooperation

Diese Arbeit ist unter der gemeinsamen Beteiligung von Forschern des Vienna Center for Quantum Science and Technology (VCQ) der Universität Wien, Imperial College London, des Instituts für Quantenoptik und Quanteninformation (IQOQI), des Albert-Einstein Instituts der Universität Hannover und der Universität Queensland entstanden. Das Projekt wurde unterstützt von: Australian Research Council, Engineering and Physical Sciences Research Council, European Research Council, Europäische Kommission, Foundational Questions Institute, Österreichischer Fonds zur Förderung der wissenschaftlichen Forschung und Österreichische Akademie der Wissenschaften.

Publikation
Pulsed quantum optomechanics. M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, È. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer. In: Proceedings of the National Academy of Sciences USA (PNAS). DOI: 10.1073/pnas.1105098108
Wissenschaftlicher Kontakt
Mag. Michael R. Vanner
Doktoratskolleg Complex Quantum Systems
Universität Wien
T +43-1-4277-725 33
michael.vanner@univie.ac.at
Rückfragehinweis
Mag. Alexandra Seiringer
Vienna Center for Quantum Science and Technology (VCQ)
Universität Wien
T +43-1-4277-725 31
vcq@quantum.at
aspelmeyer-office@univie.ac.at

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer