Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker verbinden Bauteile von Quantentechnologien

09.10.2019

Weltweit tüfteln Forscher an den Bauteilen von Quantentechnologien – dazu gehören Schaltkreise, die Informationen mit Lichtquanten anstatt Elektrizität weitergeben, aber auch Lichtquellen, die einzelne Photonen produzieren. Eine Herausforderung ist es, die Bausteine miteinander zu verbinden und so integrierte quantenoptische Schaltkreise auf Chips herzustellen. Wissenschaftler der Universität Münster haben eine Schnittstelle entwickelt, die Lichtquellen für einzelne Photonen mit nanophotonischen Netzwerken verbindet. Sie besteht aus photonischen Kristallen, die sich mit gängigen Nanofabrikationsmethoden reproduzieren lassen. Die Studie ist in „Advanced Quantum Technologies“ erschienen.

Quanteneffekte entspringen der Welt der kleinsten Teilchen und Strukturen und ermöglichen viele neue technologische Anwendungen. Ein Quantencomputer zum Beispiel könnte in Zukunft Probleme lösen, die klassische Computer nur mit großem Zeitaufwand meistern.


Verschiedene Designs für photonische Kristalle, die in ihrem Zentrum Licht konzentrieren.

J. Olthaus, P. Schrinner et al./Adv. Quantum Technol.

Weltweit tüfteln Forscherinnen und Forscher intensiv an den einzelnen Bauteilen von Quantentechnologien – dazu gehören Schaltkreise, die Informationen mithilfe von Lichtquanten anstelle von Elektrizität weitergeben, aber auch Lichtquellen, die einzelne Photonen produzieren können.

Eine besondere Herausforderung ist es, diese beiden Bausteine miteinander zu verbinden und so integrierte quantenoptische Schaltkreise auf Chips herzustellen.

Wissenschaftler der Westfälischen Wilhelms-Universität Münster (WWU) haben jetzt eine Schnittstelle entwickelt, die Lichtquellen für einzelne Photonen mit nanophotonischen Netzwerken verbindet. Sie besteht aus sogenannten photonischen Kristallen – nanostrukturierten Materialien, die beim Durchgang von Licht einen bestimmten Wellenlängenbereich verstärken können.

Solche photonischen Kristalle finden in vielen Forschungsbereichen Anwendung, waren zuvor aber noch nicht für diese Art von Schnittstellen optimiert worden. Die Wissenschaftler versprechen sich von den neu entwickelten photonischen Kristallen, dass sie sich unkompliziert mit gängigen Nanofabrikationsmethoden reproduzieren lassen.

„Mit unserer Arbeit zeigen wir, dass komplexe Quantentechnologien nicht nur in hoch spezialisierten Laboren und in einmaligen Versuchen hergestellt werden können“, sagt Nanophysiker Jun.-Prof. Dr. Carsten Schuck von der WWU, der die Studie gemeinsam mit Jun.-Prof. Dr. Doris Reiter aus der Festkörpertheorie leitete. Die Ergebnisse könnten dazu beitragen, Quantentechnologien skalierbar zu machen. Die Arbeit ist in der Fachzeitschrift „Advanced Quantum Technologies“ erschienen.

Hintergrund und Methode:

Da sich einzelne Photonen im Quantenbereich bewegen, sprechen Wissenschaftler bei den entsprechenden Lichtquellen von Quantenemittern. Für ihre Studie betrachteten die Forscher Quantenemitter, die in Nanodiamanten eingebettet sind und Photonen aussenden, wenn sie mit elektromagnetischen Feldern angeregt werden. Um die angestrebten Schnittstellen herzustellen, war es das Ziel der Forscher, optische Strukturen zu entwickeln, die auf die Wellenlänge der Quantenemitter zugeschnitten sind.

Hohlräume beziehungsweise Löcher in photonischen Kristallen eignen sich dazu, Licht in winzigen Volumina einzusperren und mit Materie, wie hier den Nanodiamanten, wechselwirken zu lassen. Physikdoktorand Jan Olthaus in der Nachwuchsgruppe von Doris Reiter entwickelte theoretische Konzepte und spezielle computergestützte Simulationstechniken, um die Designs für diese photonischen Kristalle zu berechnen.

Die theoretisch entwickelten Designs stellten Physiker in der Nachwuchsforschergruppe um Carsten Schuck am Center for NanoTechnology und Center for Soft Nanoscience der WWU her. Doktorand Philipp Schrinner fertigte die Kristalle aus einem dünnen Film aus Siliziumnitrid. Er nutzte dazu unter anderem moderne Elektronenstrahlschreiber und spezielle Ätzverfahren an den Geräten der Münster Nanofabrication Facility und schaffte es, die Kristalle in hoher Güte direkt auf dem Basismaterial Siliziumdioxid herzustellen.

Bei der Strukturierung der Kristalle variierten die Forscher zum einen die Größe und Anordnung der Löcher und zum anderen die Breite des Wellenleiters, auf dem die Löcher platziert waren. Die Messergebnisse zeigten, dass sich photonische Kristalle, die eine spezielle Variation der Lochgröße aufwiesen, am besten für die Schnittstellen eigneten.

„Unsere Zusammenarbeit zwischen theoretischen und experimentellen Physikern ist ein Idealfall in der physikalischen Forschung. Solche Kooperationen sind nicht immer einfach, da sich unsere Arbeitsweisen oft gravierend unterscheiden. Daher freuen wir uns umso mehr, dass die Kooperation zwischen unseren beiden Nachwuchsgruppen so gut aufgegangen ist“, betont Doris Reiter.

„Das Besondere an unserer Arbeit ist, dass unsere Designs keine zusätzlichen Verarbeitungsschritte erfordern, sondern mit der etablierten Dünnschichttechnologie für integrierte photonische Schaltungen kompatibel sind“, ergänzt Carsten Schuck. Das ist bei der Entwicklung von komplexen Quantentechnologien nicht selbstverständlich, denn häufig gelingt es zwar Forschern, einen wichtigen Baustein einmalig in hoher Güte herzustellen, aber nicht, den gleichen Baustein in vielfacher Ausführung erneut zu produzieren.

In ihren nächsten Schritten wollen die Wissenschaftler die in den Nanodiamanten eingebetteten Quantenemitter an bestimmten Punkten der photonischen Kristalle positionieren, um die Studienergebnisse anzuwenden.

Dazu entwickelt die Arbeitsgruppe um Carsten Schuck bereits eine spezielle Nanofabrikationstechnik, die zum Beispiel einen 100 Nanometer kleinen Diamanten mit einer Genauigkeit von weniger als 50 Nanometern platzieren kann.

Die Theoretischen Physiker um Doris Reiter wollen die Studien auf andere Materialsysteme und komplexere Geometrien der photonischen Kristalle ausweiten und zum Beispiel elliptische statt runder Löcher einsetzen.

Förderung:
Die Studie erhielt finanzielle Unterstützung durch das Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen.

Wissenschaftliche Ansprechpartner:

Westfälische Wilhelms-Universität Münster (WWU)

Jun.-Prof. Dr. Carsten Schuck
Tel: +49 251 83-63948
carsten.schuck@uni-muenster.de

Jun.-Prof. Dr. Doris Reiter
Tel.: +49 251 83-39043
doris.reiter@uni-muenster.de

Originalpublikation:

J. Olthaus, P. P. J. Schrinner, D. E. Reiter & C. Schuck (2019). Optimal photonic crystal cavities for coupling nanoemitters to photonic integrated circuits. Advanced Quantum Technologies; DOI: 10.1002/qute.201900084

Weitere Informationen:

https://onlinelibrary.wiley.com/doi/full/10.1002/qute.201900084 Originalpublikation in "Advanced Quantum Technologies"
https://www.uni-muenster.de/Physik.PI/Schuck/team/team.html WWU-Forschergruppe Carsten Schuck
https://www.uni-muenster.de/Physik.FT/en/Forschung/agreiter/index.html WWU-Forschergruppe Doris Reiter
https://www.uni-muenster.de/forschung/profil/schwerpunkt/nanowissenschaften.html WWU-Forschungsschwerpunkt "Nanowissenschaften"

Svenja Ronge | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur
25.02.2020 | Johannes Gutenberg-Universität Mainz

nachricht Kurzfilm eines magnetischen Nanowirbels
25.02.2020 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Krankheiten ohne Medikamente heilen

Fraunhofer-Forschende wollen mit Mikroimplantaten Nervenzellen gezielt elektrisch stimulieren und damit chronische Leiden wie Asthma, Diabetes oder Parkinson behandeln. Was diese Therapieform so besonders macht und welche Herausforderungen die Forscher noch lösen müssen.

Laut einer Studie des Robert-Koch-Instituts ist jede vierte Frau von Harninkontinenz betroffen. Diese Form der Blasenschwäche wurde bislang durch ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Plasmonen im atomaren Flachland

25.02.2020 | Informationstechnologie

Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

25.02.2020 | Informationstechnologie

Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

25.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics