Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker verbinden Bauteile von Quantentechnologien

09.10.2019

Weltweit tüfteln Forscher an den Bauteilen von Quantentechnologien – dazu gehören Schaltkreise, die Informationen mit Lichtquanten anstatt Elektrizität weitergeben, aber auch Lichtquellen, die einzelne Photonen produzieren. Eine Herausforderung ist es, die Bausteine miteinander zu verbinden und so integrierte quantenoptische Schaltkreise auf Chips herzustellen. Wissenschaftler der Universität Münster haben eine Schnittstelle entwickelt, die Lichtquellen für einzelne Photonen mit nanophotonischen Netzwerken verbindet. Sie besteht aus photonischen Kristallen, die sich mit gängigen Nanofabrikationsmethoden reproduzieren lassen. Die Studie ist in „Advanced Quantum Technologies“ erschienen.

Quanteneffekte entspringen der Welt der kleinsten Teilchen und Strukturen und ermöglichen viele neue technologische Anwendungen. Ein Quantencomputer zum Beispiel könnte in Zukunft Probleme lösen, die klassische Computer nur mit großem Zeitaufwand meistern.


Verschiedene Designs für photonische Kristalle, die in ihrem Zentrum Licht konzentrieren.

J. Olthaus, P. Schrinner et al./Adv. Quantum Technol.

Weltweit tüfteln Forscherinnen und Forscher intensiv an den einzelnen Bauteilen von Quantentechnologien – dazu gehören Schaltkreise, die Informationen mithilfe von Lichtquanten anstelle von Elektrizität weitergeben, aber auch Lichtquellen, die einzelne Photonen produzieren können.

Eine besondere Herausforderung ist es, diese beiden Bausteine miteinander zu verbinden und so integrierte quantenoptische Schaltkreise auf Chips herzustellen.

Wissenschaftler der Westfälischen Wilhelms-Universität Münster (WWU) haben jetzt eine Schnittstelle entwickelt, die Lichtquellen für einzelne Photonen mit nanophotonischen Netzwerken verbindet. Sie besteht aus sogenannten photonischen Kristallen – nanostrukturierten Materialien, die beim Durchgang von Licht einen bestimmten Wellenlängenbereich verstärken können.

Solche photonischen Kristalle finden in vielen Forschungsbereichen Anwendung, waren zuvor aber noch nicht für diese Art von Schnittstellen optimiert worden. Die Wissenschaftler versprechen sich von den neu entwickelten photonischen Kristallen, dass sie sich unkompliziert mit gängigen Nanofabrikationsmethoden reproduzieren lassen.

„Mit unserer Arbeit zeigen wir, dass komplexe Quantentechnologien nicht nur in hoch spezialisierten Laboren und in einmaligen Versuchen hergestellt werden können“, sagt Nanophysiker Jun.-Prof. Dr. Carsten Schuck von der WWU, der die Studie gemeinsam mit Jun.-Prof. Dr. Doris Reiter aus der Festkörpertheorie leitete. Die Ergebnisse könnten dazu beitragen, Quantentechnologien skalierbar zu machen. Die Arbeit ist in der Fachzeitschrift „Advanced Quantum Technologies“ erschienen.

Hintergrund und Methode:

Da sich einzelne Photonen im Quantenbereich bewegen, sprechen Wissenschaftler bei den entsprechenden Lichtquellen von Quantenemittern. Für ihre Studie betrachteten die Forscher Quantenemitter, die in Nanodiamanten eingebettet sind und Photonen aussenden, wenn sie mit elektromagnetischen Feldern angeregt werden. Um die angestrebten Schnittstellen herzustellen, war es das Ziel der Forscher, optische Strukturen zu entwickeln, die auf die Wellenlänge der Quantenemitter zugeschnitten sind.

Hohlräume beziehungsweise Löcher in photonischen Kristallen eignen sich dazu, Licht in winzigen Volumina einzusperren und mit Materie, wie hier den Nanodiamanten, wechselwirken zu lassen. Physikdoktorand Jan Olthaus in der Nachwuchsgruppe von Doris Reiter entwickelte theoretische Konzepte und spezielle computergestützte Simulationstechniken, um die Designs für diese photonischen Kristalle zu berechnen.

Die theoretisch entwickelten Designs stellten Physiker in der Nachwuchsforschergruppe um Carsten Schuck am Center for NanoTechnology und Center for Soft Nanoscience der WWU her. Doktorand Philipp Schrinner fertigte die Kristalle aus einem dünnen Film aus Siliziumnitrid. Er nutzte dazu unter anderem moderne Elektronenstrahlschreiber und spezielle Ätzverfahren an den Geräten der Münster Nanofabrication Facility und schaffte es, die Kristalle in hoher Güte direkt auf dem Basismaterial Siliziumdioxid herzustellen.

Bei der Strukturierung der Kristalle variierten die Forscher zum einen die Größe und Anordnung der Löcher und zum anderen die Breite des Wellenleiters, auf dem die Löcher platziert waren. Die Messergebnisse zeigten, dass sich photonische Kristalle, die eine spezielle Variation der Lochgröße aufwiesen, am besten für die Schnittstellen eigneten.

„Unsere Zusammenarbeit zwischen theoretischen und experimentellen Physikern ist ein Idealfall in der physikalischen Forschung. Solche Kooperationen sind nicht immer einfach, da sich unsere Arbeitsweisen oft gravierend unterscheiden. Daher freuen wir uns umso mehr, dass die Kooperation zwischen unseren beiden Nachwuchsgruppen so gut aufgegangen ist“, betont Doris Reiter.

„Das Besondere an unserer Arbeit ist, dass unsere Designs keine zusätzlichen Verarbeitungsschritte erfordern, sondern mit der etablierten Dünnschichttechnologie für integrierte photonische Schaltungen kompatibel sind“, ergänzt Carsten Schuck. Das ist bei der Entwicklung von komplexen Quantentechnologien nicht selbstverständlich, denn häufig gelingt es zwar Forschern, einen wichtigen Baustein einmalig in hoher Güte herzustellen, aber nicht, den gleichen Baustein in vielfacher Ausführung erneut zu produzieren.

In ihren nächsten Schritten wollen die Wissenschaftler die in den Nanodiamanten eingebetteten Quantenemitter an bestimmten Punkten der photonischen Kristalle positionieren, um die Studienergebnisse anzuwenden.

Dazu entwickelt die Arbeitsgruppe um Carsten Schuck bereits eine spezielle Nanofabrikationstechnik, die zum Beispiel einen 100 Nanometer kleinen Diamanten mit einer Genauigkeit von weniger als 50 Nanometern platzieren kann.

Die Theoretischen Physiker um Doris Reiter wollen die Studien auf andere Materialsysteme und komplexere Geometrien der photonischen Kristalle ausweiten und zum Beispiel elliptische statt runder Löcher einsetzen.

Förderung:
Die Studie erhielt finanzielle Unterstützung durch das Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen.

Wissenschaftliche Ansprechpartner:

Westfälische Wilhelms-Universität Münster (WWU)

Jun.-Prof. Dr. Carsten Schuck
Tel: +49 251 83-63948
carsten.schuck@uni-muenster.de

Jun.-Prof. Dr. Doris Reiter
Tel.: +49 251 83-39043
doris.reiter@uni-muenster.de

Originalpublikation:

J. Olthaus, P. P. J. Schrinner, D. E. Reiter & C. Schuck (2019). Optimal photonic crystal cavities for coupling nanoemitters to photonic integrated circuits. Advanced Quantum Technologies; DOI: 10.1002/qute.201900084

Weitere Informationen:

https://onlinelibrary.wiley.com/doi/full/10.1002/qute.201900084 Originalpublikation in "Advanced Quantum Technologies"
https://www.uni-muenster.de/Physik.PI/Schuck/team/team.html WWU-Forschergruppe Carsten Schuck
https://www.uni-muenster.de/Physik.FT/en/Forschung/agreiter/index.html WWU-Forschergruppe Doris Reiter
https://www.uni-muenster.de/forschung/profil/schwerpunkt/nanowissenschaften.html WWU-Forschungsschwerpunkt "Nanowissenschaften"

Svenja Ronge | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weltweit erste Herstellung des Materials Aluminiumscandiumnitrid per MOCVD
22.10.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

nachricht Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
22.10.2019 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics