Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker entdecken neuen Transportmechanismus von Nanopartikeln durch Zellmembranen

14.12.2018

Nanopartikel können Zellmembranen durchdringen, wenn deren Spannung geändert wird. Das haben Saarbrücker Experimentalphysiker in Zusammenarbeit mit Kollegen aus dem spanischen Tarragona gezeigt. Die Forscher untersuchten den Transport von Kohlenstoff-Nanoröhrchen durch eine Modellzellmembran. Dabei konnten sie nachweisen, dass es sich beim Durchdringen der Zellmembran um einen physikalischen Prozess handelt, der durch die Membranspannung kontrolliert werden kann. Die Arbeit wurde jetzt in der Fachzeitschrift „ACS Nano“ veröffentlicht.

Nanomaterialien umgeben uns überall: Sie stecken beispielsweise in Kosmetika, Textilien, Lebensmittelverpackungen oder Haushaltsartikeln. Ob dies Gesundheitsgefahren mit sich bringt, wird kontrovers diskutiert. Dabei geht es auch um Mechanismen, mit denen Nanomaterialien möglicherweise in menschliche Zellen eindringen könnten.


Dass dabei die Membranspannung eine Rolle spielen könnte, zeigt die aktuelle Veröffentlichung, die aus einer Kooperation von Physikern der spanischen Universität „Rovira i Virgili“ und der Universität des Saarlandes entstand.

Den theoretischen Teil des Projekts bearbeiteten die Forscher aus Tarragona anhand von Computersimulationen: Am Rechner schufen sie eine künstliche Zellmembran bestehend aus einer Phospholipid-Doppelschicht. „Diese gilt als Modell für die menschliche Zellmembran, die vor allem aus Phospholipiden besteht“, erläutert der Saarbrücker Experimentalphysiker Jean-Baptiste Fleury.

Anschließend hätten die spanischen Kollegen rechnerisch nachgewiesen, dass winzige Kohlenstoffröhrchen zwar in diese Doppelschicht eindringen können, jedoch nicht durch sie hindurchwandern. Dies habe sich geändert, sobald im Computermodell die Membranspannung reduziert wurde:

In diesem Fall konnten die Nanoröhrchen die Membran spontan durchdringen, sagt Fleury, der zurzeit an der Universität des Saarlandes bei Physik-Professor Ralf Seemann habilitiert und gemeinsam mit ihm ein Forschungsprojekt im Sonderforschungsbereich „Physikalische Modellierung von Nicht-Gleichgewichtsprozessen in biologischen Systemen“ leitet.

Die experimentelle Überprüfung der Ergebnisse übernahmen die Saarbrücker Experimentalphysiker. Sie erzeugten die Modellzellmembran aus Phospholipiden in einem so genannten mikrofluidischen Experiment, bei dem kleinste Flüssigkeitsmengen auf engstem Raum eingesetzt werden. Innerhalb eines mikrofluidischen Bauteils brachten sie Wassertröpfchen in Kontakt mit Öl, in dem sich Phospholipide befanden.

Diese Lipid-Moleküle sind polar aufgebaut: Sie besitzen einen hydrophilen (wasserliebenden) „Kopf“ und hydrophobe (wasserabstoßende) Enden, die aus zwei Kohlenwasserstoffketten bestehen. „Im Grenzbereich zwischen Wasser und Öl kann die Lipiddoppelschicht spontan entstehen. Ihren Kern bilden die wasserabstoßenden Anteile, während die hydrophilen Enden der Lipide sich nach außen richten“, erläutert Jean-Baptiste Fleury.

Laut Fleury ist diese fünf Nanometer dicke Doppellage normalerweise für Moleküle undurchlässig. Dies gilt auch für die von den Forschern benutzten Kohlenstoff-Nanoröhrchen. Mittels optischer Fluoreszenzmikroskopie und elektrophysiologischen Messungen konnten die Experimentalphysiker zeigen, dass die zehn Nanometer langen Röhrchen mit ihren hydrophilen Enden in die künstliche Zellmembran eindrangen, jedoch im Kern festgehalten wurden.

Da die Kohlenstoffröhrchen besonders gute Transporteigenschaften für Ionen besitzen, konnte durch Leitfähigkeitsmessungen gezeigt werden, dass sie senkrecht in der Membran eindrangen und als künstliche Ionenkanäle verwendet werden können. Sobald allerdings die Membranspannung ausreichend reduziert wurde, konnten die Nanoröhrchen durch die Membran hindurchwandern.

„Ab einer Stärke von vier Millinewton pro Meter können die Nanoröhrchen ihren Kontakt mit dem hydrophoben Kern verlieren und die Membran durchdringen“, berichtet Fleury und betont:

„Es handelt sich dabei um einen physikalischen Transportmechanismus, was in Zellen eher selten auftritt. Und wir können diesen Prozess durch die Membranspannung kontrollieren.“

Da Spannungen von einigen Millinewton durchaus in bestimmten menschlichen Zelltypen auftreten können, erlauben die Ergebnisse Rückschlüsse darauf, in welchen Bereichen des Körpers ein Transport von Nanopartikeln durch Zellmembranen grundsätzlich möglich sein könnte.

Link zur Publikation unter: DOI:10.1021/acsnano.8b04657

Kontakt:
Dr. Jean-Baptiste Fleury
Fachrichtung Physik, Universität des Saarlandes
E-Mail: jean-baptiste.fleury(at)pyhsik.uni-saarland.de
Tel.: 0681 302-71712
http://www.uni-saarland.de/fak7/seemann/

Originalpublikation:

https://pubs.acs.org/doi/10.1021/acsnano.8b04657

Gerhild Sieber | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Massereiche Sternembryos wachsen in Schüben
14.07.2020 | Max-Planck-Institut für Astronomie

nachricht Komet C/2020 F3 (NEOWISE) mit bloßem Auge am Abendhimmel sichtbar
13.07.2020 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Hammer-on – wie man Atome schneller schwingen lässt

Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben. Die mit dem Strom verknüpfte Ladungsverschiebung zwischen Gallium- und Arsen-Atomen wirkt über elektrische Wechselwirkungen zurück auf die Schwingungen.

Hammer-on ist eine von vielen Rockmusikern benutzte Technik, um mit der Gitarre schnelle Tonfolgen zu spielen und zu verbinden. Dabei wird eine schwingende...

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie sicher Knock Codes für die Smartphone-Displaysperre sind

15.07.2020 | Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Explosionssignal in der Glasfaser

15.07.2020 | Geowissenschaften

Mobiles EEG zur Detektion epileptischer Anfälle im Alltag

15.07.2020 | Medizintechnik

So verändert sich das Supply Chain Management bis 2040

15.07.2020 | Studien Analysen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics