Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker berechnen, wann Atomkerne instabil werden

08.12.2017

Wenn Atomkerne zu viele Neutronen enthalten, brechen sie auseinander. Ein internationales Physiker-Team hat nun erstmals eine Methode entwickelt, die eine exakte Berechnung ermöglicht, ab wann die Kerne instabil werden. An der internationalen Studie waren Forscher der Universität Bonn maßgeblich beteiligt. Sie ist nun in den Physical Review Letters erschienen.

Atome bestehen aus einer Hülle und einem Kern. Die Hülle wird von den negativ geladenen Elektronen gebildet. Sie sind dafür verantwortlich, dass Atome chemische Bindungen eingehen können. Der Kern ist dagegen positiv geladen. Er hält die Elektronen aufgrund der elektrostatischen Anziehung gewissermaßen fest.


Der Supercomputer JUQUEEN am Forschungszentrum Jülich, an dem die Berechnungen durchgeführt wurden.

© Foto: Forschungszentrum Jülich/Ralf-Uwe Limbach

Für die positive Kernladung sorgen dabei die Protonen. Von ihnen gibt es stets genauso viele wie Elektronen. Atome sind daher insgesamt gesehen elektrisch neutral. Ein Kohlenstoff-Atom etwa besteht aus sechs Elektronen und sechs Protonen.

Daneben enthält der Kern des Kohlenstoff-Atoms aber auch noch ungeladene Teilchen, die Neutronen. Meist sind dies im Kohlenstoff ebenfalls sechs, es können aber auch sieben oder acht sein. Wenn der Kern eines Atoms jedoch zu viele Neutronen enthält, wird er instabil. Das Atom kann dann zerbrechen – es zerfällt.

Wann das genau passiert, ist von Atom zu Atom unterschiedlich. „Bisher ließ sich nicht exakt berechnen, bei wie vielen Neutronen dieser Punkt erreicht ist“, erklärt Prof. Dr. Ulf Meißner vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn. Grund: Im Kern wirken unterschiedliche Kräfte. Die gängigen Algorithmen können manche davon genau kalkulieren, andere jedoch nur näherungsweise bestimmen.

„Freiheitsberaubung“ im Atomkern

Anders die Methode, die Meißner und seine Kollegen nun publiziert haben. Diese basiert zunächst auf einer Art „Freiheitsberaubung“. In der Realität können sich die Protonen und Neutronen nämlich an beliebigen Stellen im Raum aufhalten. Für ihre Berechnungen schränkten die Wissenschaftler diese Freiheit jedoch ein:

„Wir ordneten unsere Kernteilchen auf den Knotenpunkten eines dreidimensionalen Gitters an“, erläutert der Erstautor der Studie, Meißners Mitarbeiter Dr. Serdar Elhatisari. „Wir erlaubten ihnen also nur bestimmte, streng definierte Positionen.“ Für eine derartige Gitterkonfiguration lässt sich relativ einfach die Bindungsenergie zwischen den Teilchen bestimmen.

Im nächsten Schritt durften die Kernteilchen die Plätze tauschen. Dadurch entstand eine neue Gitterkonfiguration. Wenn diese energetisch günstiger war als die erste, diente sie als Basis für einen erneuten Platztausch. „Diesen Schritt haben wir millionenfach wiederholt“, erklärt Meißner. „Wir näherten uns dadurch immer mehr der Kern-Konfiguration, die energetisch optimal ist. Und auf dieser Grundlage konnten wir dann berechnen, ob der Kern mit der vorgegebenen Anzahl von Protonen und Neutronen stabil ist oder nicht.“

Experten sprechen auch von einem Monte-Carlo-Verfahren. Es liefert zwar exakte Ergebnisse zu den Bindungsverhältnissen im Atomkern. Aus der Zuordnung der Kernteilchen zu bestimmten diskreten Positionen ergeben sich aber auch Nachteile. So ist es im Normalfall nicht möglich, die genaue Dichteverteilung des Kerns zu berechnen. „Wir haben unser Verfahren aber so modifiziert, dass auch das möglich ist“, betont der Physiker.

Die Ergebnisse erlauben einen detaillierteren Einblick in den Aufbau der Atomkerne. Die Beteiligten hoffen unter anderem, so die Entstehung der Elemente nach dem Urknall besser nachvollziehen können. An der Studie waren neben dem Helmholtz-Institut Physiker des Forschungszentrums Jülich, der Ruhr-Universität Bochum sowie verschiedener US-Hochschulen beteiligt. Die Berechnungen wurden auf dem Supercomputer JUQUEEN am Forschungszentrum Jülich durchgeführt.

Publikation: Serdar Elhatisari, Evgeny Epelbaum, Hermann Krebs, Timo A. Lähde, Dean Lee, Ning Li, Bing-nan Lu, Ulf-G. Meißner und Gautam Rupak: Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering; Physical Review Letters; DOI: 10.1103/PhysRevLett.119.222505

Kontakt:

Prof. Dr. Ulf-G. Meißner
Helmholtz-Institut für Strahlen- und Kernphysik
Universität Bonn
Tel. 0228/732365
E-Mail: meissner@hiskp.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wettrennen in Sonnennähe: Ionen sind schneller als Atome
22.03.2019 | Georg-August-Universität Göttingen

nachricht Die Zähmung der Lichtschraube
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics