Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronenhaut dünner als angenommen - Wissenschaftlerteam berechnet Neutronenverteilung des Atomkerns Kalzium-48

03.11.2015

Einem internationalen Wissenschaftlerteam mit Beteiligung von Darmstädter Forschern ist es erstmals gelungen, die Neutronenverteilung des Atomkerns Kalzium-48 zu berechnen. Dieser Kern besteht aus 20 Protonen und 28 Neutronen, und stellt ein komplexes quantenmechanisches Vielteilchensystem dar, das jetzt mit Hilfe von Hochleistungsrechnern gelöst werden konnte. Wie im Fachmagazin „Nature Physics“ berichtet, zeigen die neuen Ergebnisse, dass die sogenannte Neutronenhaut, also die Differenz zwischen den Radien der Neutronen- und Protonenverteilung, deutlich kleiner ist als ursprünglich angenommen.

Die elektrische Ladungsverteilung eines Atomkerns ist theoretisch gut verstanden und auch experimentell gut zugänglich. Im Gegensatz dazu ist die Neutronenverteilung aufgrund der Ladungsneutralität der Neutronen schwierig zu messen.


Die Berechnungen des internationalen Wissenschaftlerteams verbinden die Neutronenverteilung des Atomkerns Kalzium-48 (Bildmitte) mit dem Radius eines Neutronensterns, wie er z.B. im Zentrum des Krebsnebels existiert (oben links). Grafik: ORNL

Da der Atomkern Kalzium-48 acht Neutronen mehr als Protonen hat, ragt aber die Neutronenverteilung über die Ladungsverteilung hinaus. Somit sind die neuen Resultate essentiell für die Beantwortung der grundlegenden Frage: Wie groß ist ein Atomkern?

„Wir starteten von Grundprinzipien, als wir den Atomkern Kalzium-48 aus seinen fundamentalen Bestandteilen, Protonen und Neutronen, am Rechner simulierten“, erklärt der theoretische Kernphysiker Gaute Hagen vom Oak Ridge National Laboratory, Erstautor der Studie.

„Dieses stark korrelierte System, bestehend aus 48 Nukleonen, ist als quantenmechanisches Vielteilchenproblem alles andere als einfach zu lösen. Viele Fortschritte waren insgesamt für die Ergebnisse nötig: akkurate Kernkräfte, ausgeklügelte Rechenalgorithmen und moderne Hochleistungsrechner.“ Die Rechnungen wurden auf dem stärksten Supercomputer der USA, Titan am Oak Ridge National Laboratory, und am Jülich Supercomputing Center gemacht.

Neben der Neutronenverteilung erlauben die Hochleistungsrechnungen auch, damit verbundene physikalische Größen vorherzusagen, die in Präzisionsmessungen künftig experimentell untersucht werden. Dazu gehört die Dipolpolarisierbarkeit von Kalzium-48, die ein Team aus Physikern der Darmstadt-Osaka Kollaboration dabei ist zu bestimmen.

Außerdem bereiten Forscher des Jefferson Labs in den USA Messungen des Neutronenradius von Kalzium-48 vor. Die Erkenntnisse dieser Experimente könnten die theoretischen Berechnungen bestätigen und so zukünftige theoretische Modelle näher einschränken.

Darüber hinaus konnten die Wissenschaftler ihre mikroskopischen Ergebnisse auf makroskopische Neutronensterne anwenden. So verbinden die Berechnungen 18 Größenordnungen vom Atomkern zum Neutronenstern.

Neben den Wissenschaftlern Christian Drischler, Kai Hebeler, Achim Schwenk und Johannes Simonis von der TU Darmstadt waren bei der Berechnung der Neutronenverteilung und der damit verbundenen physikalischen Eigenschaften Wissenschaftler aus den USA (Oak Ridge National Laboratory, University of Tennessee und Michigan State University), Schweden (Chalmers University of Technology), Kanada (TRIUMF), Israel (Hebrew University), Norwegen (University of Oslo) und Italien (University of Trento) beteiligt.

Weitere Informationen:

Die Studie ist zugänglich unter:
http://www.nature.com/nphys/journal/vaop/ncurrent/pdf/nphys3529.pdf

Bettina Bastian | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Geometrie eines Elektrons erstmals bestimmt
23.05.2019 | Universität Basel

nachricht Galaxien als „kosmische Kochtöpfe“
23.05.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Im Focus: Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der...

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

Wissensparcour bei der time4you gestartet

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Geometrie eines Elektrons erstmals bestimmt

23.05.2019 | Physik Astronomie

Galaxien als „kosmische Kochtöpfe“

23.05.2019 | Physik Astronomie

Auflösen von Proteinstau am Eingang von Mitochondrien

23.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics