Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Quantenzustände für bessere Quantenspeicher

23.11.2016

Wie kann man Quanteninformation möglichst lange abspeichern? Einem Team der TU Wien gelingt bei der Entwicklung von Quantenspeichern ein wichtiger Schritt nach vorne.

Die Speicher, die wir heute für unsere Computer verwenden, unterscheiden nur zwischen 0 und 1. Die Quantenphysik erlaubt aber auch beliebige Überlagerungen von Zuständen. Auf diesem Grundsatz, dem „Superpositionsprinzip“, beruhen Ideen für neue Quanten-Technologien.


Ein künstlicher Diamant unter dem optischen Mikroskop. Da der Diamant viele Stickstoff Fehlstellen enthält, fluoresziert er in roter Farbe.

TU Wien


Messapparatur zur Herstellung von langlebigen Quantenzuständen.

TU Wien

Ein zentrales Problem daran ist allerdings, dass solche quantenphysikalischen Überlagerungen sehr kurzlebig sind. Nur für eine winzige Zeitspanne kann man die Information aus einem Quantenspeicher zuverlässig auslesen, danach ist sie unwiederbringlich verloren.

An der TU Wien ist nun in der Entwicklung neuer Quantenspeicher-Konzepte ein wichtiger Schritt nach vorne gelungen. In Zusammenarbeit mit dem japanischen Telekommunikationsriesen NTT arbeiten die Wiener Forscher unter der Leitung von Johannes Majer an Quantenspeichern aus Stickstoffatomen und Mikrowellen.

Durch ihre unterschiedliche Umgebung weisen die Stickstoffatome alle leicht unterschiedliche Eigenschaften auf, wodurch der Quantenzustand relativ schnell „zerläuft“. Durch gezielte Manipulation eines kleinen Teils der Atome kann man diese jedoch in einen neuen Quantenzustand bringen, der eine mehr als zehnfache Lebensdauer hat. Diese Ergebnisse wurden nun im Fachjournal „Nature Photonics“ veröffentlicht.

Stickstoff im Diamant

„Wir verwenden synthetische Diamanten, in denen einzelne Stickstoffatome eingebaut sind.“, erklärt Projektleiter Johannes Majer vom Atominstitut der TU Wien. „Den Quantenzustand dieser Stickstoffatome koppeln wir mit Mikrowellen, das ergibt ein Quantensystem, in dem wir Information speichern und später wieder auslesen können.“

Die Speicherdauer in diesen Systemen ist allerdings durch die inhomogene Verbreiterung der Mikrowellenübergänge in den Stickstoffatomen im Diamantkristall beschränkt. Nach etwa einer halben Mikrosekunde kann der Quantenzustand nicht mehr zuverlässig ausgelesen werden, das eigentliche Signal geht verloren. Das Team um Johannes Majer hatte nun die Idee des „spektralen Lochbrennens“, einem Trick, der es im optischen Bereich ermöglicht Daten in inhomogen verbreiterten Medien zu speichern, für supraleitende Quantenschaltkreise und Spin-Quantenspeicher zu adaptieren.

Dmitry Krimer, Beneditk Hartl und Stefan Rotter (Institut für Theoretische Physik der TU Wien) konnten in einer Theoriearbeit zeigen, dass solche Zustände, die vom störenden Rauschen weitgehend entkoppelt sind auch für diese Systeme existieren. „Der Trick ist das Quantensystem durch gezielte Manipulation in diese langlebigen Zustände zu bringen, damit die Information auch dort abgespeichert werden kann.“, erklärt Dmitry Krimer.

Bestimmte Energien ausschließen

„Durch die lokalen Eigenschaften des nicht ganz perfekten Diamantkristalls haben die Übergänge in den Stickstoffatomen leicht unterschiedliche Energien“, erklärt Stefan Putz, Erstautor der Studie, der mittlerweile von der TU Wien an die Princeton University gewechselt ist.

„Wenn man mit Hilfe von Mikrowellen gezielt Stickstoffatome bei einer bestimmten Energien „ausbleicht“ entsteht ein „Spektrales Loch“. Die übrigen Stickstoffatome können dann in einen neuen Quantenzustand, einen so genannten Dunkelzustand, im Zentrum dieses „Spektralen Lochs“ gebracht werden. Dieser ist viel stabiler und eröffnet völlig neue Möglichkeiten.“

„Unsere Arbeit ist ein Machbarkeitsbeweis für ein neues Konzept mit dem wir das Fundament für die weitere Erkundung innovativer Operationsprotokolle von Quantenspeichern legen wollen“, sagt Stefan Putz.

Mit der neuen Methode konnte die Lebensdauer von Quantenzuständen des gekoppelten Systems aus Mikrowellen und Stickstoffatomen um mehr als das zehnfache auf etwa fünf Mikrosekunden gesteigert werden. Das ist in den Zeitmaßstäben unseres Alltags noch immer nicht viel, reicht allerdings für wichtige quantentechnologische Anwendungen bereits aus.

„Der Vorteil unseres Systems ist, dass man Quanteninformation innerhalb von Nanosekunden einschreiben und auslesen kann“, erklärt Johannes Majer. „In den Mikrosekunden, die es stabil gehalten werden kann, ist daher eine große Zahl von Arbeitsschritten möglich.“

Originalpublikationen: Spectral hole burning and its application in microwave photonics
Nature Photonics: PUBLISHED ONLINE: 21 NOVEMBER 2016 | DOI: 10.1038/NPHOTON.2016.225
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2016.225.html

Hybrid quantum systems with collectively coupled spin states: suppression of decoherence through spectral hole burning, Phys. Rev. Lett. 115, 033601 (2015) | DOI: 10.1103/PhysRevLett.115.033601
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.033601

Weitere Informationen:

http://www.tuwien.ac.at/en/news/news_detail/article/124550/

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics