Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Architektur für Quantencomputer

26.10.2015

Theoretiker aus Innsbruck schlagen einen Bauplan für einen skalierbaren Quantencomputer vor. Das von Wolfgang Lechner gemeinsam mit Philipp Hauke und Peter Zoller entwickelte, neue Modell beseitigt grundlegende Einschränkungen der Programmierbarkeit bisheriger Ansätze und öffnet den Weg zur Lösung sehr allgemeiner Optimierungsprobleme mit Hilfe der Quantenmechanik.

Die Entwicklung eines Quantencomputers, der manche Aufgaben sehr viel effizienter lösen kann als klassische Computer, hat in den vergangenen Jahren große Fortschritte gemacht. Heute können Physiker im Labor sehr gezielt Quantenbits erzeugen, sie kontrollieren und mit ihnen einfache Rechnungen durchführen.


Philipp Hauke, Wolfgang Lechner und Peter Zoller

IQOQI/Knabl

Für den praktischen Einsatz sind dabei besonders sogenannte „adiabatische“ Quantencomputer sehr interessant. Diese sind dafür konzipiert, Optimierungsprobleme zu lösen, die am herkömmlichen Computer nicht mehr machbar sind. Allen bisherigen Konzepten für diese Art von Quantencomputer ist allerdings gemeinsam, dass sie die Quantenbits direkt in Verbindung bringen müssen, um über deren Wechselwirkungen ein Programm ablaufen zu lassen. Die möglichen Wechselwirkungen und damit die Rechenschritte sind aber durch die räumliche Anordnung der Quantenbits beschränkt.

„Die Programmiersprache in diesen Systemen ist die Wechselwirkung zwischen den physikalischen Quantenbits. Sie ist durch die Hardware vorgegeben. Damit unterliegenden alle diese Ansätze einer sehr grundlegenden Einschränkung, wenn es darum geht einen voll programmierbaren Quantencomputer zu bauen“, erklärt Wolfgang Lechner vom Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften in Innsbruck.

Quantencomputer wird frei programmierbar

Gemeinsam mit Philipp Hauke und Peter Zoller hat Lechner einen gänzlich neuen Weg eingeschlagen. Die Theoretiker am Quantenphysik-Standort Innsbruck umgehen die Einschränkungen durch die Hardware, indem sie die Programmierung des Quantencomputers von der Ebene der physikalischen Quantenbits lösen und neue Quantenbits einführen.

Die physikalischen Quantenbits repräsentieren jeweils ein Paar von logischen Quantenbits und können über lokale Felder angesteuert werden. Bei Atomen oder Ionen sind das zum Beispiel elektrische Felder, bei supraleitenden Quantenbits Magnetfelder. „Die logischen Quantenbits können über diese Felder frei programmiert werden“, erklärt Mitautor Philipp Hauke vom Institut für Theoretische Physik der Universität Innsbruck. „Damit wird nicht nur die Beschränkung durch die Hardware umgangen, sondern auch die technologische Umsetzung skalierbar.“

Eingebaute Fehlerkorrektur

Weil in der vorgeschlagenen Architektur die Anzahl der Freiheitsgrade ansteigt – was auch zu nichtphysikalischen Lösungen führen würde –, ordnen die Physiker die Quantenbits räumlich so an, dass jeweils vier von ihnen lokal wechselwirken. „Damit sorgen wir dafür, dass nur noch physikalische Lösungen möglich sind“, erklärt Wolfgang Lechner. Das Ergebnis eines Rechenvorgangs wird in mehreren physikalischen Quantenbits gleichzeitig gespeichert. „Die Lösung liegt in redundanter Form vor. Damit ist unser Modell auch gleichzeitig fehlertolerant“, freut sich Lechner.

Umgesetzt werden kann die neue Architektur auf allen Quantenbit-Plattformen: von supraleitenden Schaltkreisen bis zu ultrakalten Gasen in optischen Gittern. „Unser Ansatz erlaubt auch den Einsatz von Technologien, die bisher für diese Art der Quanteninformationsverarbeitung nicht genutzt werden konnten“, sagt der Physiker, der nun gemeinsam mit Hauke und Zoller das neue Modell in der Fachzeitschrift Science Advances vorstellt.

In der Wissenschaftsgemeinde und darüber hinaus stößt es bereits auf großes Interesse. „Der Schritt von mechanischen Rechenmaschinen zu freiprogrammierbaren Computern hat vor 80 Jahren das IT-Zeitalter eingeleitet, heute stehen wir in Hinblick auf die Quanteninformationsverarbeitung an einem ähnlichen Punkt“, zeigt sich Peter Zoller überzeugt.

Die neue Architektur für Quantencomputer wurde Anfang dieses Jahres auch als Patent eingereicht. Finanziell unterstützt wurden die Arbeiten vom österreichischen Wissenschaftsfonds FWF und dem europäischen Forschungsrat ERC.

Publikation: A quantum annealing architecture with all-to-all connectivity from local interactions. W. Lechner, P. Hauke, P. Zoller. Science Advances 1, e1500838 (2015).
doi:10.1126/sciadv.1500838

Rückfragehinweis:
Wolfgang Lechner
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Tel.: +43 512 507 4788
E-Mail: Wolfgang.Lechner@uibk.ac.at

Christian Flatz
Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: Christian.Flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics