Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel präzise steuern und digital nutzen

18.08.2015

Erstmals lassen sich Kolloide – winzige, in Lösungen vorliegende Partikel – hochpräzise anordnen und vor allem in ihren Bewegungen steuern. Dank einem neuen, von Wissenschaftlern der Universität Zürich erforschten Verfahren könnten diese kolloidalen Nanopartikel Eingang in die digitale Technologie finden. Denn sie brauchen wenig Energie, sie sind schnell und bieten enorme Speicherkapazitäten – ideale Eigenschaften für neuartige Datenträger oder hochauflösende Bildschirme.

Kolloide sind kleinste Partikel, die in einer Flüssigkeit fein verteilt sind. Bisher finden wir sie vor allem in Getränken, Kosmetika und Farben. Mit blossem Auge können wir sie bei einer Grössenordnung von zehn bis circa hundert Nanometern nicht erkennen. Aufgrund der «Brownschen Bewegung» bewegen sich diese Nanopartikel permanent. Sie unterliegen dabei durch ihre elektrische Ladung den Kräften von Abstossung und Anziehung.


In einem einzigen Nanostab sind EIN- und AUS-Zustände eines Datenspeichers (entspricht binären 1 und 0) möglich. Das externe elektrische Signal (rote Linie) schreibt einen neuen Zustand auf das Pi

UZH

Madhavi Krishnan, Professorin für physikalische Chemie an der Universität Zürich, ist es bereits in Arbeiten vor fünf Jahren gelungen, räumliche Kontrolle über Materie in kleinstem Massstab zu erlangen. In einer neuen Studie zeigt sie nun gemeinsam mit ihren Laborkollegen, dass es möglich ist, diese Nanopartikel nicht nur räumlich anzuordnen, sondern auch ohne Berührung in einer Flüssigkeit kontrolliert zu bewegen.


Steuerung mit elektrischen und optischen Signalen

Die Forscher haben ein Verfahren entwickelt, mit dem sich Nanostruktur erzeugen und flexibel verändern lässt: Sie waren in der Lage, die Kleinstpartikel hochpräzise zu neuen Gebilden anzuordnen und deren Kräfte bewusst zu steuern.

«Die Manipulation wird durch die Wechselwirkungen mit elektrischen und optischen Feldern möglich», erklärt Madhavi Krishnan. Ausserdem braucht es für die neuartige Anwendung der intermolekularen Wechselwirkung erstmals keine ultrakalten Temperaturen. Die neue Technologie funktioniert bestens bei Raumtemperatur. Sie ist überdies extrem schnell und äusserst reibungsarm.


Kleiner, schneller und mit mehr Speicher

Die Methode zur Anordnung und Bewegung der Kolloide erlaubt es, gänzlich neue Materialien zu entwickeln. «Gerade für digitale Technologien weisen die Nanopartikel ideale Eigenschaften auf, da sich in jedem einzelnen Partikel Daten speichern und abrufen lassen», erklärt Madhavi Krishnan.

Mit der gezielten Steuerung einzelner Nanopartikel eröffnen sich neue Möglichkeiten, diese einzusetzen – beispielsweise als zukünftige Datenspeicher oder bei neuartigen Bildschirmen mit bisher schwer zu erreichender Auflösung. «Es lassen sich Nano-Bildschirme herstellen in der Art des Kindle-Lesegeräts mit einer tausendmal kleineren Pixelgrösse und viel schnellerer Reaktionszeit», so die Wissenschaftlerin.

Literatur

Christopher J. Myers, Michele Celebrano and Madhavi Krishnan. Information storage and retrieval in a single levitating colloidal particle. Nature Nanotechnology, August 17, 2015. doi: 10.1038/nnano.2015.173

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles.html

Evelyne Brönnimann | Universität Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren
17.10.2018 | Forschungsverbund Berlin e.V.

nachricht Reise zum Merkur mit Berner Beteiligung
17.10.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sinneswahrnehmung ist keine Einbahnstraße

17.10.2018 | Biowissenschaften Chemie

Space Farming dank Pflanzenhormon Strigolacton

17.10.2018 | Agrar- Forstwissenschaften

Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren

17.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics