Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Möglicher Lesekopf für Quantencomputer: Graphenschicht liest optische Information aus Nanodiamanten

01.12.2014

Aus Stickstoff-Fehlstellen-Zentren in Diamanten ließen sich wichtige Komponenten eines Quantencomputers bauen. Doch bisher war es nicht möglich, die optisch ins System „geschriebene“ Information elektronisch wieder auszulesen. Mit Hilfe von Graphenschichten hat ein Wissenschaftlerteam um Professor Alexander Holleitner von der Technischen Universität München (TUM) nun eine solche Leseeinheit realisiert.

Idealer Weise besteht ein Diamant aus reinem Kohlenstoff. Doch in der Natur sind immer auch kleine Verunreinigungen darin zu finden. Am besten untersucht sind Doppelfehlstellen, die aus einem Stickstoffatom und einer Leerstelle bestehen. Sie könnten als hochempfindliche Sensoren oder als Registerbausteine für Quantencomputer eingesetzt werden – doch bisher gab es keinen Weg, die optisch hinein gesteckte Information elektrisch wieder auszulesen.


Zukunftsvision Quantencomputer mit Chips aus Diamant und Graphen

Grafik: Christian Hohmann / Nanosystems Initiative Munich (NIM)


Laboraufbau zum Vermessen der Wechselwirkungen zwischen Graphen und Nanodiamanten mit eingebauten Stickstoff-Fehlstellen-Zentren

Bild: Astrid Eckert / TUM

Ein Team unter Leitung von Professor Alexander Holleitner, Physiker an der TU München und Frank Koppens, Physikprofessor am Institut de Ciencies Fotoniques nahe Barcelona, hat nun eine solche Auslesemöglichkeit geschaffen. Basis ist eine direkte Energieübertragung von Fehlstellen in Nanodiamanten auf eine unmittelbar benachbarte Graphenschicht.

Strahlungsloser Energietransfer

Bestrahlt man einen solchen Nanodiamanten mit Laserlicht, so hebt ein Licht-Photon im Stickstoff-Fehlstellen-Zentrum ein Elektron von seinem Normalzustand in einen angeregten Zustand. „Das System aus dem angeregten Elektron und dem verlassenen Grundzustand kann man als Dipol auffassen“, sagt Professor Alexander Holleitner. „Dieser Dipol erzeugt in der nahegelegenen Graphenschicht wieder einen Dipol aus einem Elektron und einer Leerstelle“.

Doch während in den rund 100 Nanometer großen Diamanten die einzelnen Fehlstellen-Zentren voneinander isoliert sind, ist die Graphenschicht elektrisch leitend. Zwei Goldelektroden erfassen die erzeugte Ladung und machen sie elektronisch messbar.

Elektronische Detektion im Pikosekundenbereich

Wesentlich für diesen Versuchsaufbau ist, dass die Messung extrem schnell geschieht.
Denn nach wenigen Milliardstel Sekunden würde sonst das erzeugte Elektron-Loch-Paar wieder verschwinden. Doch die in Holleitners Labor entwickelte Technik erlaubt Messungen im Pikosekundenbereich (Billionstel Sekunden). Damit können die Wissenschaftler die Vorgänge genau verfolgen.

„Prinzipiell müsste unsere Technik auch mit Farbstoffmolekülen funktionieren“, sagt Doktorand Andreas Brenneis, der zusammen mit Louis Gaudreau die Messungen durchgeführt hat. „Ein Diamant enthält rund 500 solcher Fehlstellen, aber die Methode
ist so empfindlich, dass wir auch einzelne Farbstoffmoleküle messen könnten“.

Aufgrund der extrem schnellen Schaltgeschwindigkeit der von den Wissenschaftlern entwickelten Nanoschaltkreise könnten mit dieser Technik aufgebaute Sensoren nicht nur extrem schnelle Vorgänge messen sondern würden, eingebaut in einem zukünftigen Quantencomputer auch extrem hohe Taktraten bis in den Terahertz-Bereich ermöglichen.

Die Arbeit wurde unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (Exzellenzcluster Nanosystems Initiative Munich, NIM und SFB 631), des European Research Councils (ERC Grant NanoREAL, CarbonLight), der Fundacio Cellex Barcelona, des Marie-Curie International Fellowship COFUND sowie des ICFOnest Programms und des Center for NanoScience (CeNS) München. An der Publikation wirkten Physiker der TU München, der Universität Augsburg, des Walther-Meißner-Instituts der Bayerischen Akademie der Wissenschaften und des ICFO-Institut de Ciencies Fotoniques in Castelldefels nahe Barcelona mit.

Publikation:

Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene,
Andreas Brenneis, Louis Gaudreau, Max Seifert, Helmut Karl, Martin S. Brandt, Hans Huebl, Jose A. Garrido, Frank H. L. Koppens and Alexander W. Holleitner
Nature Nanotechnology, Advanced online publication, 1. Dezember 2014 – DOI: 10.1038/nnano.2014.276

Kontakt:

Prof. Dr. Alexander W. Holleitner
Technische Universität München
Walter Schottky Institut – Zentrum für Nanotechnologie und Nanomaterialien
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11575 – E-Mail: holleitner@wsi.tum.de


Weitere Informationen:

http://pubs.acs.org/doi/abs/10.1038/nnano.2014.276  Originalpublikation
http://www.wsi.tum.de/Research/HolleitnergroupE24/tabid/166/Default.aspx  Website der Arbeitsgruppe

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Superscharfe Bilder von der neuen Adaptiven Optik des VLT

18.07.2018 | Physik Astronomie

Schonend, schnell und präzise: Innovative Herz-Bildgebung in Freiburg

18.07.2018 | Medizintechnik

Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze

18.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics