Möglicher Lesekopf für Quantencomputer: Graphenschicht liest optische Information aus Nanodiamanten

Zukunftsvision Quantencomputer mit Chips aus Diamant und Graphen Grafik: Christian Hohmann / Nanosystems Initiative Munich (NIM)

Idealer Weise besteht ein Diamant aus reinem Kohlenstoff. Doch in der Natur sind immer auch kleine Verunreinigungen darin zu finden. Am besten untersucht sind Doppelfehlstellen, die aus einem Stickstoffatom und einer Leerstelle bestehen. Sie könnten als hochempfindliche Sensoren oder als Registerbausteine für Quantencomputer eingesetzt werden – doch bisher gab es keinen Weg, die optisch hinein gesteckte Information elektrisch wieder auszulesen.

Ein Team unter Leitung von Professor Alexander Holleitner, Physiker an der TU München und Frank Koppens, Physikprofessor am Institut de Ciencies Fotoniques nahe Barcelona, hat nun eine solche Auslesemöglichkeit geschaffen. Basis ist eine direkte Energieübertragung von Fehlstellen in Nanodiamanten auf eine unmittelbar benachbarte Graphenschicht.

Strahlungsloser Energietransfer

Bestrahlt man einen solchen Nanodiamanten mit Laserlicht, so hebt ein Licht-Photon im Stickstoff-Fehlstellen-Zentrum ein Elektron von seinem Normalzustand in einen angeregten Zustand. „Das System aus dem angeregten Elektron und dem verlassenen Grundzustand kann man als Dipol auffassen“, sagt Professor Alexander Holleitner. „Dieser Dipol erzeugt in der nahegelegenen Graphenschicht wieder einen Dipol aus einem Elektron und einer Leerstelle“.

Doch während in den rund 100 Nanometer großen Diamanten die einzelnen Fehlstellen-Zentren voneinander isoliert sind, ist die Graphenschicht elektrisch leitend. Zwei Goldelektroden erfassen die erzeugte Ladung und machen sie elektronisch messbar.

Elektronische Detektion im Pikosekundenbereich

Wesentlich für diesen Versuchsaufbau ist, dass die Messung extrem schnell geschieht.
Denn nach wenigen Milliardstel Sekunden würde sonst das erzeugte Elektron-Loch-Paar wieder verschwinden. Doch die in Holleitners Labor entwickelte Technik erlaubt Messungen im Pikosekundenbereich (Billionstel Sekunden). Damit können die Wissenschaftler die Vorgänge genau verfolgen.

„Prinzipiell müsste unsere Technik auch mit Farbstoffmolekülen funktionieren“, sagt Doktorand Andreas Brenneis, der zusammen mit Louis Gaudreau die Messungen durchgeführt hat. „Ein Diamant enthält rund 500 solcher Fehlstellen, aber die Methode
ist so empfindlich, dass wir auch einzelne Farbstoffmoleküle messen könnten“.

Aufgrund der extrem schnellen Schaltgeschwindigkeit der von den Wissenschaftlern entwickelten Nanoschaltkreise könnten mit dieser Technik aufgebaute Sensoren nicht nur extrem schnelle Vorgänge messen sondern würden, eingebaut in einem zukünftigen Quantencomputer auch extrem hohe Taktraten bis in den Terahertz-Bereich ermöglichen.

Die Arbeit wurde unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (Exzellenzcluster Nanosystems Initiative Munich, NIM und SFB 631), des European Research Councils (ERC Grant NanoREAL, CarbonLight), der Fundacio Cellex Barcelona, des Marie-Curie International Fellowship COFUND sowie des ICFOnest Programms und des Center for NanoScience (CeNS) München. An der Publikation wirkten Physiker der TU München, der Universität Augsburg, des Walther-Meißner-Instituts der Bayerischen Akademie der Wissenschaften und des ICFO-Institut de Ciencies Fotoniques in Castelldefels nahe Barcelona mit.

Publikation:

Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene,
Andreas Brenneis, Louis Gaudreau, Max Seifert, Helmut Karl, Martin S. Brandt, Hans Huebl, Jose A. Garrido, Frank H. L. Koppens and Alexander W. Holleitner
Nature Nanotechnology, Advanced online publication, 1. Dezember 2014 – DOI: 10.1038/nnano.2014.276

Kontakt:

Prof. Dr. Alexander W. Holleitner
Technische Universität München
Walter Schottky Institut – Zentrum für Nanotechnologie und Nanomaterialien
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11575 – E-Mail: holleitner@wsi.tum.de

Weitere Informationen:

http://pubs.acs.org/doi/abs/10.1038/nnano.2014.276  Originalpublikation
http://www.wsi.tum.de/Research/HolleitnergroupE24/tabid/166/Default.aspx  Website der Arbeitsgruppe

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nachhaltige Tür- und Zutrittslösungen für einen sicheren, intelligenten Betrieb von Gebäuden

dormakaba auf der Messe BAU 2023: Unter dem Motto “For every place that matters“ präsentiert sich dormakaba auf der Messe BAU 2023 vom 17. bis 22. April in München in…

Mit Lasern in eine mobile Zukunft

Das EU-Infrastrukturprojekt NextGenBat hat ambitionierte Ziele: Die Performance von mobilen Energiespeichern wie Batterien soll mit neuen Materialien und laserbasierten Herstellungsverfahren enorm gesteigert werden. Zum Einsatz kommt dabei ein Ansatz zur…

Aufbruch in die dritte Dimension

Lassen sich auch anspruchsvolle Metallbauteile in Serie produktiv und reproduzierbar 3D-drucken? Forschende aus Aachen bejahen diese Frage: Sie transferierten am Fraunhofer-Institut für Lasertechnik ILT das zweidimensionale Extreme Hochgeschwindigkeits-Laserauftragschweißen EHLA auf…

Partner & Förderer