Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

21.12.2018

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wien wurde nun in China eine neue Untersuchungsmethode angewandt.

Elektronen sind nicht bloß kleine Kügelchen, die sich wie ein Gummiball durch ein Material bewegen. Aus den Gesetzen der Quantenphysik ergibt sich, dass sich Elektronen wellenartig verteilen.


Optische Instrumente an der TU Wien

TU Wien

Diese Wellen können in manchen Materialien eine geometrisch recht komplizierte Form annehmen. In sogenannten „topologische Materialien“ gibt es Elektronen-Zustände, die für technische Anwendungen sehr interessant sein können, allerdings ist es ausgesprochen schwierig, diese Materialien und die dazugehörigen Elektronenzustände zu identifizieren.

Von der TU Wien und mehreren Forschungsgruppen aus China wurde dazu nun eine neue Idee entwickelt und im Experiment umgesetzt. Eine Art „Kristall aus Lichtwellen“ wird erzeugt, um Atome genau im richtigen geometrischen Muster festzuhalten.

Diese „Lichtkristalle“, die auch bisher schon in unterschiedlicher Form für die Manipulation von Atomen verwendet wurden, kann man nun verwenden, um das System gezielt aus dem Gleichgewicht zu bringen: Man schaltet zwischen einfachen und komplizierten Zuständen hin und her, und das System verrät dabei, ob es topologisch interessante Zustände hat oder nicht. Diese Erkenntnisse wurden nun im Fachjournal „Physical Review Letters“ publiziert.

Brötchen und Donuts

Die Bedeutung der Topologie erkennt man leicht, wenn man zu viele Dinge in die Einkaufstasche gepackt hat: Das Kuchenstück ist leicht zerquetscht und hat plötzlich dieselbe Form wie die Banane. Kuchenstück und Banane haben dieselbe geometrische Grundstruktur, sie unterscheiden sich topologisch nicht voneinander.

Ein Donut hingegen hat ein Loch in der Mitte – seine Topologie ist anders. Auch wenn er leicht gequetscht wird, kann man seine Form von der des Kuchenstücks immer noch problemlos unterscheiden.

„Mit Quantenzuständen ist es so ähnlich“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien. „Quantenzustände können eine nichttriviale Topologie haben, die gegenüber Störungen sehr stabil ist, auch wenn sich bestimmte Details ändern.

Das macht sie technisch so interessant – denn mit Störungen hat man in jedem Experiment und in jedem technischen Gerät immer zu kämpfen.“ Im Jahr 2016 wurde der Physik-Nobelpreis für Forschung an topologischen Materialeigenschaften vergeben, doch immer noch gilt es als äußerst schwierig, bei einem bestimmten Material überhaupt festzustellen, ob es topologisch interessante Zustände zulässt oder nicht.

„Wir beschäftigen uns mit Quantenzuständen, die sich nicht im Gleichgewicht befinden, die also gerade dabei sind, sich rasch zu verändern“, sagt Jörg Schmiedmayer.

„Das ist meist schwierig, aber wie wir zeigen konnten, kann man auf diese Weise oft hochinteressante Information bekommen.“ Diese Erkenntnisse aus Wien brachte Schmiedmayer nun in eine Kooperation mit Forschungsteams aus China in ein gemeinsames Projekt ein.

„Geleitet wurde das Experiment von Prof. Shuai Chen, in der Forschungsgruppe von Prof. Jian-Wei Pan. Beide waren einst mein Mitarbeiter in Heidelberg, und seit ihrer Rückkehr nach China arbeiten wir eng zusammen“, berichtet Schmiedmayer.

Die TU Wien und die Chinesische Universität für Wissenschaft und Technik (USTC, Heifei, China) unterzeichneten 2016 ein Kooperationsabkommen, durch das speziell im Bereich Physik die Forschungszusammenarbeit verstärkt wurde.

Das Ungleichgewicht verrät viel Neues

Mit Hilfe von Lichtwellen können Atome an bestimmten Stellen festgehalten werden, sodass ein regelmäßiges Gitter aus Atomen entsteht, ähnlich wie in einem Kristall. Indem man das Licht verändert, kann man auch die Geometrie der Atom-Anordnung umschalten, und dabei untersuchen, wie sich die Elektronen-Zustände ändern.

„Bei dieser Veränderung wird schlagartig ein massives Ungleichgewicht erzeugt“, sagt Jörg Schmiedmayer. „Die Quantenzustände müssen sich neu anordnen und ein neues Gleichgewicht anstreben, ähnlich wie Kugeln, die man von einem Hügel nach unten rollen lässt, bis sie im Tal einen Gleichgewichtszustand finden. Und wir konnten nun klare Signaturen finden, durch die uns das System genau während dieses Ungleichgewichtsprozesses verrät, ob topologisch interessante Zustände zu finden sind oder nicht.“

Für die Forschung an topologischen Materialien ist das eine wichtige neue Erkenntnis. Man könnte sogar die künstlichen Licht-Kristalle anpassen, um bestimmte Kristallstrukturen zu simulieren und dadurch neue topologische Materialien zu finden.

Wissenschaftliche Ansprechpartner:

Prof. Jörg Schmiedmayer
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141801
hannes-joerg.schmiedmayer@tuwien.ac.at

Originalpublikation:

Uncover Topology by Quantum Quench Dynamics, Sun et al., Phys. Rev. Lett. 121, 250403 (2018) https://doi.org/10.1103/PhysRevLett.121.250403

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenimaging: Unsichtbares sichtbar machen
02.04.2020 | Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF

nachricht Internationales Physiker-Team berechnet Effekt virtueller quarks in der Streuung von zwei Lichtquanten
02.04.2020 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics