Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

Optische Instrumente an der TU Wien TU Wien

Elektronen sind nicht bloß kleine Kügelchen, die sich wie ein Gummiball durch ein Material bewegen. Aus den Gesetzen der Quantenphysik ergibt sich, dass sich Elektronen wellenartig verteilen.

Diese Wellen können in manchen Materialien eine geometrisch recht komplizierte Form annehmen. In sogenannten „topologische Materialien“ gibt es Elektronen-Zustände, die für technische Anwendungen sehr interessant sein können, allerdings ist es ausgesprochen schwierig, diese Materialien und die dazugehörigen Elektronenzustände zu identifizieren.

Von der TU Wien und mehreren Forschungsgruppen aus China wurde dazu nun eine neue Idee entwickelt und im Experiment umgesetzt. Eine Art „Kristall aus Lichtwellen“ wird erzeugt, um Atome genau im richtigen geometrischen Muster festzuhalten.

Diese „Lichtkristalle“, die auch bisher schon in unterschiedlicher Form für die Manipulation von Atomen verwendet wurden, kann man nun verwenden, um das System gezielt aus dem Gleichgewicht zu bringen: Man schaltet zwischen einfachen und komplizierten Zuständen hin und her, und das System verrät dabei, ob es topologisch interessante Zustände hat oder nicht. Diese Erkenntnisse wurden nun im Fachjournal „Physical Review Letters“ publiziert.

Brötchen und Donuts

Die Bedeutung der Topologie erkennt man leicht, wenn man zu viele Dinge in die Einkaufstasche gepackt hat: Das Kuchenstück ist leicht zerquetscht und hat plötzlich dieselbe Form wie die Banane. Kuchenstück und Banane haben dieselbe geometrische Grundstruktur, sie unterscheiden sich topologisch nicht voneinander.

Ein Donut hingegen hat ein Loch in der Mitte – seine Topologie ist anders. Auch wenn er leicht gequetscht wird, kann man seine Form von der des Kuchenstücks immer noch problemlos unterscheiden.

„Mit Quantenzuständen ist es so ähnlich“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien. „Quantenzustände können eine nichttriviale Topologie haben, die gegenüber Störungen sehr stabil ist, auch wenn sich bestimmte Details ändern.

Das macht sie technisch so interessant – denn mit Störungen hat man in jedem Experiment und in jedem technischen Gerät immer zu kämpfen.“ Im Jahr 2016 wurde der Physik-Nobelpreis für Forschung an topologischen Materialeigenschaften vergeben, doch immer noch gilt es als äußerst schwierig, bei einem bestimmten Material überhaupt festzustellen, ob es topologisch interessante Zustände zulässt oder nicht.

„Wir beschäftigen uns mit Quantenzuständen, die sich nicht im Gleichgewicht befinden, die also gerade dabei sind, sich rasch zu verändern“, sagt Jörg Schmiedmayer.

„Das ist meist schwierig, aber wie wir zeigen konnten, kann man auf diese Weise oft hochinteressante Information bekommen.“ Diese Erkenntnisse aus Wien brachte Schmiedmayer nun in eine Kooperation mit Forschungsteams aus China in ein gemeinsames Projekt ein.

„Geleitet wurde das Experiment von Prof. Shuai Chen, in der Forschungsgruppe von Prof. Jian-Wei Pan. Beide waren einst mein Mitarbeiter in Heidelberg, und seit ihrer Rückkehr nach China arbeiten wir eng zusammen“, berichtet Schmiedmayer.

Die TU Wien und die Chinesische Universität für Wissenschaft und Technik (USTC, Heifei, China) unterzeichneten 2016 ein Kooperationsabkommen, durch das speziell im Bereich Physik die Forschungszusammenarbeit verstärkt wurde.

Das Ungleichgewicht verrät viel Neues

Mit Hilfe von Lichtwellen können Atome an bestimmten Stellen festgehalten werden, sodass ein regelmäßiges Gitter aus Atomen entsteht, ähnlich wie in einem Kristall. Indem man das Licht verändert, kann man auch die Geometrie der Atom-Anordnung umschalten, und dabei untersuchen, wie sich die Elektronen-Zustände ändern.

„Bei dieser Veränderung wird schlagartig ein massives Ungleichgewicht erzeugt“, sagt Jörg Schmiedmayer. „Die Quantenzustände müssen sich neu anordnen und ein neues Gleichgewicht anstreben, ähnlich wie Kugeln, die man von einem Hügel nach unten rollen lässt, bis sie im Tal einen Gleichgewichtszustand finden. Und wir konnten nun klare Signaturen finden, durch die uns das System genau während dieses Ungleichgewichtsprozesses verrät, ob topologisch interessante Zustände zu finden sind oder nicht.“

Für die Forschung an topologischen Materialien ist das eine wichtige neue Erkenntnis. Man könnte sogar die künstlichen Licht-Kristalle anpassen, um bestimmte Kristallstrukturen zu simulieren und dadurch neue topologische Materialien zu finden.

Prof. Jörg Schmiedmayer
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141801
hannes-joerg.schmiedmayer@tuwien.ac.at

Uncover Topology by Quantum Quench Dynamics, Sun et al., Phys. Rev. Lett. 121, 250403 (2018) https://doi.org/10.1103/PhysRevLett.121.250403

Media Contact

Dr. Florian Aigner Technische Universität Wien

Weitere Informationen:

http://www.tuwien.ac.at

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer