Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mini-Röntgenquelle mit Laserlicht

14.08.2015

Physiker der Ludwig-Maximilians-Universität, des Max-Planck-Instituts für Quantenoptik und der TU München haben ein Verfahren aus lasergenerierter Röntgenstrahlung und Phasenkontrast-Röntgentomographie entwickelt, mit dem sie Weichteil-Strukturen in Organismen dreidimensional darstellen.

Mit Laserlicht haben Münchner Physiker eine Miniatur-Röntgenquelle gebaut. Damit haben die Forscher vom Labor für Attosekundenphysik des Max-Planck-Instituts für Quantenoptik und der Technischen Universität München erstmals mit Hilfe von lasererzeugter Röntgenstrahlung feinste Strukturen im Körper eines Lebewesens dreidimensional aufgenommen.


Das weltweit erste Bild einer Fliege, die mit einem rein lasergestützten Phasenkontrast-Röntgentomographie-Bildverfahren aufgenommen wurde. Zusammengesetzt ist es aus rund 1500 Einzelbildern.

Foto: Karsch/Pfeiffer

Mit der lichtgetriebenen Strahlung in Kombination mit der Phasenkontrast-Röntgentomographie machten die Wissenschaftler feinste Details einer nur wenige Millimeter großen Fliege sichtbar. Bis heute wird eine vergleichbare Strahlung in kilometergroßen, teuren Ringbeschleunigern erzeugt.

Das lasergetriebene System in Kombination mit der Phasenkontrast-Röntgentomographie zur Darstellung von Weichteilen beansprucht gerade mal ein Universitätslabor. In künftigen medizinischen Anwendungen könnte das neue Bildgebungsverfahren damit kostengünstiger und platzsparender als heutige Technologien zum Einsatz kommen.

Selbst feinste Härchen auf den Flügeln einer winzigen Fliege werden sichtbar, wenn die Physiker um Prof. Stefan Karsch und Prof. Franz Pfeiffer ein Insekt mit Röntgenlicht durchleuchten. Das Experiment hat Pioniercharakter.

Denn erstmals haben die Wissenschaftler ihre Technik zur Erzeugung von Röntgenstrahlung aus Laserpulsen gekoppelt mit der sogenannten Phasenkontrast-Röntgentomographie, mit der man Gewebe in Organismen darstellen kann. Herausgekommen ist eine dreidimensionale Ansicht des Tieres, die ungeahnte Details sichtbar gemacht hat.

Die dazu notwendigen Röntgenstrahlen wurden über Elektronen erzeugt, die von rund 25 Femtosekunden langen Laserpulsen auf einer Strecke von rund einem Zentimeter fast bis auf Lichtgeschwindigkeit gebracht wurden. Eine Femtosekunde dauert ein Millionstel einer milliardstel Sekunde. Die Laserpulse hatten eine Leistung von rund 80 Terawatt (80x10^12 Watt). Zum Vergleich: Ein Atomkraftwerk verfügt über 1500 Megawatt (1,5x10^9 Watt).

Zunächst pflügt der Laserpuls durch ein Plasma, bestehend aus positiv geladenen Atomrümpfen und deren Elektronen, wie ein Schiff durchs Wasser und erzeugt dabei eine Kielwelle, die aus schwingenden Elektronen besteht. Diese Elektronenwelle zieht eine wellenförmig elektrische Feldstruktur nach sich, auf der Elektronen surfen und dadurch beschleunigt werden. Dabei kommen die Teilchen ins Schlingern und emittieren Röntgenstrahlung.

Jeder Lichtpuls erzeugt einen Röntgenpuls. Die erzeugte Röntgenstrahlung hat spezielle Eigenschaften: Sie hat eine Wellenlänge von rund 0,1 Nanometer, eine Dauer von nur ca. fünf Femtosekunden und ist räumlich kohärent, das heißt, sie scheint von einem Punkt auszugehen.

Die lasergetriebene Röntgenstrahlung kombinierten die Forscher erstmals mit dem Phasenkontrast-Bildgebungsverfahren des Teams von Prof. Franz Pfeiffer von der TU- München. Dabei nutzt man, im Gegensatz zur üblichen Absorption, die Brechung der Strahlung an Objekten, um deren Form exakt abzubilden. So wird auch weiches Gewebe sichtbar. Damit dies funktioniert, ist die oben erwähnte räumliche Kohärenz Voraussetzung.

Mit diesem lasergestützten Bildgebungsverfahren sind die Forscher in der Lage, Strukturen von ca. 1/10 bis 1/100 des Durchmessers eines menschlichen Haares sichtbar zu machen. Ein weiterer Vorteil ist die Möglichkeit dreidimensionale Abbildungen eines Objekts zu erschaffen und so quasi in dessen Körper einzutauchen.

Denn nach jedem Röntgenstrahlungspuls, also nach jedem Einzelbild, kann das zu untersuchende Objekt ein Stück gedreht werden. So entstanden beispielsweise von der Fliege rund 1500 Einzelbilder, die dann zu einem 3D-Datensatz zusammengesetzt werden konnten.

Aufgrund der Kürze der Röntgenpulse kann diese Technik in Zukunft auch ultraschnelle Vorgänge auf der Femtosekunden-Zeitskala, wie sie etwa in Molekülen vorkommen, erschließen, quasi also durch Belichtung mit einem Femtosekunden-Blitzlicht.

Vor allem aber interessant wird die Technologie für medizinische Anwendungen. Denn sie ist in der Lage, Unterschiede in der Dichte von Gewebe sichtbar zu machen. Tumorgewebe etwa haben eine geringere Dichte als gesundes Gewebe.

Damit bietet das Verfahren eine großartige Perspektive Tumore, die kleiner als ein Millimeter sind, lokal in ihrem Frühstadium aufzuspüren, bevor sie in den Körper streuen und ihre tödliche Wirkung entfalten. Dazu müssen die Forscher jedoch die Wellenlänge der Röntgenstrahlung noch weiter verkürzen, um dickere Gewebeschichten als bisher durchdringen zu können.
Thorsten Naeser

Originalpublikation:
J. Wenz, S. Schleede, K. Khrennikov, M. Bech, P. Thibault, M. Heigoldt, F. Pfeiffer und S. Karsch, Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source
Nature Communications, 20.Juli 2015, doi: 10.1038/ncomms8568

Weitere Informationen erhalten Sie von:
Prof. Dr. Stefan Karsch
Fakultät für Physik der Ludwig-Maximilians-Universität München
Am Coulombwall 1, 85748 Garching
Tel.: 089 32905 242
Email: stefan.karsch@mpq.mpg.de
www.attoworld.de  , www.lex-photonics.de 

Prof. Franz Pfeiffer
Technische Universität München, Lehrstuhl für Biomedizinische Physik
James-Franck-Str. 1, 85748 Garching b. München
Tel.: 089 289 10807
Email: franz.pfeiffer@tum.de

Karolina Schneider | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

nachricht Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?
16.07.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics