Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mini-Röntgenquelle mit Laserlicht

14.08.2015

Physiker der Ludwig-Maximilians-Universität, des Max-Planck-Instituts für Quantenoptik und der TU München haben ein Verfahren aus lasergenerierter Röntgenstrahlung und Phasenkontrast-Röntgentomographie entwickelt, mit dem sie Weichteil-Strukturen in Organismen dreidimensional darstellen.

Mit Laserlicht haben Münchner Physiker eine Miniatur-Röntgenquelle gebaut. Damit haben die Forscher vom Labor für Attosekundenphysik des Max-Planck-Instituts für Quantenoptik und der Technischen Universität München erstmals mit Hilfe von lasererzeugter Röntgenstrahlung feinste Strukturen im Körper eines Lebewesens dreidimensional aufgenommen.


Das weltweit erste Bild einer Fliege, die mit einem rein lasergestützten Phasenkontrast-Röntgentomographie-Bildverfahren aufgenommen wurde. Zusammengesetzt ist es aus rund 1500 Einzelbildern.

Foto: Karsch/Pfeiffer

Mit der lichtgetriebenen Strahlung in Kombination mit der Phasenkontrast-Röntgentomographie machten die Wissenschaftler feinste Details einer nur wenige Millimeter großen Fliege sichtbar. Bis heute wird eine vergleichbare Strahlung in kilometergroßen, teuren Ringbeschleunigern erzeugt.

Das lasergetriebene System in Kombination mit der Phasenkontrast-Röntgentomographie zur Darstellung von Weichteilen beansprucht gerade mal ein Universitätslabor. In künftigen medizinischen Anwendungen könnte das neue Bildgebungsverfahren damit kostengünstiger und platzsparender als heutige Technologien zum Einsatz kommen.

Selbst feinste Härchen auf den Flügeln einer winzigen Fliege werden sichtbar, wenn die Physiker um Prof. Stefan Karsch und Prof. Franz Pfeiffer ein Insekt mit Röntgenlicht durchleuchten. Das Experiment hat Pioniercharakter.

Denn erstmals haben die Wissenschaftler ihre Technik zur Erzeugung von Röntgenstrahlung aus Laserpulsen gekoppelt mit der sogenannten Phasenkontrast-Röntgentomographie, mit der man Gewebe in Organismen darstellen kann. Herausgekommen ist eine dreidimensionale Ansicht des Tieres, die ungeahnte Details sichtbar gemacht hat.

Die dazu notwendigen Röntgenstrahlen wurden über Elektronen erzeugt, die von rund 25 Femtosekunden langen Laserpulsen auf einer Strecke von rund einem Zentimeter fast bis auf Lichtgeschwindigkeit gebracht wurden. Eine Femtosekunde dauert ein Millionstel einer milliardstel Sekunde. Die Laserpulse hatten eine Leistung von rund 80 Terawatt (80x10^12 Watt). Zum Vergleich: Ein Atomkraftwerk verfügt über 1500 Megawatt (1,5x10^9 Watt).

Zunächst pflügt der Laserpuls durch ein Plasma, bestehend aus positiv geladenen Atomrümpfen und deren Elektronen, wie ein Schiff durchs Wasser und erzeugt dabei eine Kielwelle, die aus schwingenden Elektronen besteht. Diese Elektronenwelle zieht eine wellenförmig elektrische Feldstruktur nach sich, auf der Elektronen surfen und dadurch beschleunigt werden. Dabei kommen die Teilchen ins Schlingern und emittieren Röntgenstrahlung.

Jeder Lichtpuls erzeugt einen Röntgenpuls. Die erzeugte Röntgenstrahlung hat spezielle Eigenschaften: Sie hat eine Wellenlänge von rund 0,1 Nanometer, eine Dauer von nur ca. fünf Femtosekunden und ist räumlich kohärent, das heißt, sie scheint von einem Punkt auszugehen.

Die lasergetriebene Röntgenstrahlung kombinierten die Forscher erstmals mit dem Phasenkontrast-Bildgebungsverfahren des Teams von Prof. Franz Pfeiffer von der TU- München. Dabei nutzt man, im Gegensatz zur üblichen Absorption, die Brechung der Strahlung an Objekten, um deren Form exakt abzubilden. So wird auch weiches Gewebe sichtbar. Damit dies funktioniert, ist die oben erwähnte räumliche Kohärenz Voraussetzung.

Mit diesem lasergestützten Bildgebungsverfahren sind die Forscher in der Lage, Strukturen von ca. 1/10 bis 1/100 des Durchmessers eines menschlichen Haares sichtbar zu machen. Ein weiterer Vorteil ist die Möglichkeit dreidimensionale Abbildungen eines Objekts zu erschaffen und so quasi in dessen Körper einzutauchen.

Denn nach jedem Röntgenstrahlungspuls, also nach jedem Einzelbild, kann das zu untersuchende Objekt ein Stück gedreht werden. So entstanden beispielsweise von der Fliege rund 1500 Einzelbilder, die dann zu einem 3D-Datensatz zusammengesetzt werden konnten.

Aufgrund der Kürze der Röntgenpulse kann diese Technik in Zukunft auch ultraschnelle Vorgänge auf der Femtosekunden-Zeitskala, wie sie etwa in Molekülen vorkommen, erschließen, quasi also durch Belichtung mit einem Femtosekunden-Blitzlicht.

Vor allem aber interessant wird die Technologie für medizinische Anwendungen. Denn sie ist in der Lage, Unterschiede in der Dichte von Gewebe sichtbar zu machen. Tumorgewebe etwa haben eine geringere Dichte als gesundes Gewebe.

Damit bietet das Verfahren eine großartige Perspektive Tumore, die kleiner als ein Millimeter sind, lokal in ihrem Frühstadium aufzuspüren, bevor sie in den Körper streuen und ihre tödliche Wirkung entfalten. Dazu müssen die Forscher jedoch die Wellenlänge der Röntgenstrahlung noch weiter verkürzen, um dickere Gewebeschichten als bisher durchdringen zu können.
Thorsten Naeser

Originalpublikation:
J. Wenz, S. Schleede, K. Khrennikov, M. Bech, P. Thibault, M. Heigoldt, F. Pfeiffer und S. Karsch, Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source
Nature Communications, 20.Juli 2015, doi: 10.1038/ncomms8568

Weitere Informationen erhalten Sie von:
Prof. Dr. Stefan Karsch
Fakultät für Physik der Ludwig-Maximilians-Universität München
Am Coulombwall 1, 85748 Garching
Tel.: 089 32905 242
Email: stefan.karsch@mpq.mpg.de
www.attoworld.de  , www.lex-photonics.de 

Prof. Franz Pfeiffer
Technische Universität München, Lehrstuhl für Biomedizinische Physik
James-Franck-Str. 1, 85748 Garching b. München
Tel.: 089 289 10807
Email: franz.pfeiffer@tum.de

Karolina Schneider | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf die Nähe kommt es an: Wie Kristall den Widerstand von Graphen beeinflusst
28.01.2020 | Georg-August-Universität Göttingen

nachricht Wie man ein Bild von einem Lichtpuls macht
27.01.2020 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt

28.01.2020 | Biowissenschaften Chemie

Warum Gesunde für Kranke so wichtig sind! – Vergleichsstudie geht Fibromyalgie-Syndrom auf den Grund

28.01.2020 | Biowissenschaften Chemie

Kiss and Run: Wie Zellen ihre Bestandteile trennen und recyceln

28.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics